研究生: |
趙語涵 Chao, Yu-Han |
---|---|
論文名稱: |
STEM導向特定工程設計課程發展之研究 A study of development in STEM-based specified-engineering-design curriculum |
指導教授: |
簡佑宏
Chein, Yu-Hung |
口試委員: |
張文德
Chan, Wen-Te 林弘昌 Lin, Hung-Chang 簡佑宏 Chein, Yu-Hung |
口試日期: | 2021/11/17 |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 課程 、工程設計 、STEM 、原案分析 、創意 |
英文關鍵詞: | curriculum, engineering design, STEM, Protocol analysis, creativity |
研究方法: | 實驗設計法 、 原案分析 |
DOI URL: | http://doi.org/10.6345/NTNU202300080 |
論文種類: | 學術論文 |
相關次數: | 點閱:309 下載:19 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一種以傳統課程內容為基礎融入STEM科際整合課程以利更符合主題需求,透過此方式在不同工程領域類別所設計出的「STEM導向特定工程設計流程」來強化學生的工程能力及科技素養,也藉由這樣的發展來定義出更符合設計主題的工程設計流程教學。以往的傳統科技教育是以技術相關的知識爲主要內容,在問題解決的過程中使用具體且特定的材料進行動手實作以培養學生的創造性思維以及解決問題之能力,而近年來科技教育開始以STEM(Science, Technology, Engineering, Mathematics)知識整合之工程設計課程為導向,運用不同種材料來動手實作,其中強調解決問題並且注重預測分析以及最佳化的過程。目前大多數的STEM工程設計課程都是採用一般通則性的工程設計流程,但其實在不同的工程領域之設計流程和實作都是存在差異的。本研究以臺北市某高中十年級三個班的學生爲研究對象,將學生們分為三組,以傳統手作木哨課程、一般工程設計流程以及STEM導向之特定工程設計來進行,課程完成後在創意思考方面以產品創意分析矩陣對學生的設計作品進行評價,並採用原案分析法對學生在設計過程對於整個工程設計流程的認知行分析,以比較三種不同方式在工程設計流程的運用及認知上的差異、創意表現之優異。
本研究結果發現:(1)一般工程設計流程以及特定工程設計流程在STEM知識是優於傳統手作木哨課程的。(2)特定工程設計流程讓學生了解何謂工程設計流程上是優於傳統手作木哨課程及一般工程設計流程的。(3)特定工程設計流程課程的受測高中生所表現的創意展現是優於一般工程設計組的學生。鑒於上述結果,在生活科技教育課程當中利用特定工程設計流程進行課程更能使得學生提升STEM相關知能及創造力,並能更加瞭解工程設計之流程,並期望透過此方式能發展出未來高中加深加廣之工程設計課程之參考。
This research aims to develop a STEM interdisciplinary integrated curriculum based on traditional curriculum content to better meet the theme needs. Through this method, the "STEM-oriented specific engineering design process" designed in different engineering fields can strengthen students' engineering ability and technological literacy also use this development to define engineering design process teaching that is more in line with the design theme. In the past, traditional technology education was mainly based on technology-related knowledge. In the process of problem solving, specific and specific materials were used for hands-on practice to cultivate students' creative thinking and problem-solving ability. In recent years, science and technology education has begun to use STEM (Science, Technology, Engineering, Mathematics) knowledge integration is an engineering design course oriented, using different kinds of materials for hands-on practice, which emphasizes problem solving and focuses on the process of predictive analysis and optimization. At present, most STEM engineering design courses adopt the general engineering design process, but in fact, there are differences in the design process and implementation in different engineering fields. This research takes students from three classes of tenth grade in a senior high school in Taipei City as the research object. The students are divided into three groups. They are carried out with traditional handmade wooden whistle course, general engineering design process, and STEM-based specified-engineering-design. After the completion of the course, in terms of creative thinking, the product creative analysis matrix is used to evaluate the students’ design works, and the original case analysis method is used to analyze the students’ perception of the entire engineering design process in the design process to compare the three different methods in the engineering design process. Differences in application and cognition, and excellent creative performance.
The results of this study found that: (1) The general engineering design process and specific engineering design process are better than traditional handmade wooden whistle course in STEM knowledge (2) The specific engineering design process allows students to understand what the engineering design process is superior to traditional handmade wooden whistle course and general engineering design processes. (3) The creative of the tested high school students in the specific engineering design process course is better than that of the students in the general engineering design group. In view of the above results, the use of specific engineering design processes in the technology education curriculum will enable students to improve STEM-related knowledge and creativity, and to have a better understanding of the engineering design process. It is hoped this teaching way can be a reference for the broadening of engineering design courses in the future.
一、中文部份
王明蘅(1997)。設計原案資料記錄格式之研究。國科會整合計畫專案計畫書。國立成功大學。
Brown, T.(2010)。設計思考改變世界(吳莉君,譯)。聯經。(原著出版於2009年)
林坤誼、游光昭(2004)。透過中小學科技素養課程以培育學生創造力之探討。南大學報,38(2),15-30。
邱茂林(1999)。原案分析中設計知識表達與紀錄之研究-以案例式建築設計為例。行政院國家科學委員會專題研究計畫成果報告(NSC-88-2211-E-006-054)。國立成功大學。
邱茂林(2000)。建築設計原案記錄與分析之課題探討。建築學報,34,11-37 https://doi.org/10.6377/JA.200011.0011
范斯淳(2016)。高中工程設計取向之課程設計與實驗:跨學科STEM知識的整合與應用。國立臺灣師範大學。https://doi.org/10.6345/NTNU202204703
范斯淳、游光昭(2016)。科技教育融入 STEM 課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。 https://doi.org/10.6209/JORIES.2016.61(2).06
張世慧(2011)。創造力教學、學習與評量之探究。教育資料與研究雙月刊,100,1-22。
張春興(2007)。張氏心理學辭典。東華。
教育部(2002)。創造力教育白皮書。教育部。
教育部(2018)。十二年國民基本教育課程綱要國民中學暨普通型高級中等學校-科技領域。2020/04/19取自 https://cirn.moe.edu.tw/Upload/file/27547/66409.pdf
游光昭、林坤誼(2007)。數學、科學、科技統整課程對不同學習風格學習者在學習成效上之影響。教育研究學報,41(1),1-16。 https://doi.org/10.6235/TVE.1705
二、外文部份
Amabile, T. M. (1998). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10(1), 123-167. https://doi.org/10.1016/j.riob.2016.10.001
Atman, C. J. (2019). Design timelines: Concrete and sticky representations of design process expertise. Design Studies, 65, 125-151. https://doi.org/10.1016/j.destud.2019.10.004
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. Cambridge University press. https://doi.org/10.2307/1269577
Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. Cambridge University Press.
Bammens, Y. P. M. (2016). Employees’ innovative behavior in social context: A closer examination of the role of organizational care. Journal of Product Innovation Management. 33(3), 244-259. https://doi.org/10.1111/jpim.12267
Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: Review and synthesis. Journal of Creative Behavior, 15, 158-178. https://doi.org/10.1002/j.2162-6057.1981.tb00287.x
Bourgeois-Bougrine, S., Buisine, S., Vandendriessche, C., Glaveanu, V., & Lubart, T. (2017). Engineering students’ use of creativity and development tools in conceptual product design: What, when and how?. Thinking Skills and Creativity, 24, 104-117. https://doi.org/10.1016/j.tsc.2017.02.016
Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association. https://doi.org/10.2505/9781936959259
Chien, Y. H. (2017). Developing a pre-engineering curriculum for 3D printing skills for high school technology education. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 2941-2958. https://doi.org/10.12973/eurasia.2017.00729a
Chien, Y. H., & Chu, P. Y. (2017). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16(6), 1047-1064. https://doi.org/10.1007/s10763-017-9832-4
Chien, Y. H., & Yao, C. K. (2020). Development of an ai userbot for engineering design education using an intent and flow combined framework. Applied Sciences, 10(22), 7970. https://doi.org/10.3390/app10227970
Chien, Y. H., Yao, C. K., & Chao, Y. H. (2020). Effects of Multidisciplinary Participatory Design Method on Students’ Engineering Design Process. Eng—Advances in Engineering, 1(2), 112-121. https://doi.org/10.3390/eng1020007
Cohen, J. (1972). Weighted chi square: An extension of the kappa method. Educational and Psychological Measurement, 32(1), 61-74. https://doi.org/10.1177/001316447203200106
Crilly, N. (2015). Fixation and creativity in concept development: The attitudes and practices of expert designers. Design Studies, 38(2015), 54–91. https://doi.org/10.1016/j.destud.2015.01.002
Cropley, D. H. (2016). Creativity in engineering. In Multidisciplinary contributions to the science of creative thinking (pp. 155-173). Springer. https://doi.org/10.1007/978-981-287-618-8_10
Cross, N. (2004). Expertise in design. Design Studies, 25(5), 427-441. https://doi.org/10.1016/j.destud.2004.06.002
Davidson, J. L., & Jensen, C. (2013, June). Participatory design with older adults: An analysis of creativity in the design of mobile healthcare applications. In Proceedings of the 9th ACM Conference on Creativity & Cognition (pp. 114–123). https://doi.org/10.1145/2466627.2466652
Do, Y. (2013). Self-selective multi-objective robot vision projects for students of different capabilities. Mechatronics, 23(8), 974-986. https://doi.org/10.1016/j.mechatronics.2012.11.003
Dori, Y. J., Tal, R. T., & Tsaushu, M. (2003). Teaching biotechnology through case studies - can we improve higher order thinking skills of nonscience majors? Science Education, 87(6), 767-793. https://doi.org/10.1002/sce.10081
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal Amnesia Disrupts Creative Thinking. Hippocampus, 23(12), 1143–1149. https://doi.org/10.1002/hipo.22208
Dugger, W. E. Jr. (1994). The relationship between technology, science, engineering, and mathematics. The Technology Teacher, 52(7), 5-23.
Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: verbal reports as data (Rev. ed.). The MIT Press. https://doi.org/10.7551/mitpress/5657.001.0001
Erkens, G. (1998). Multiple Episode Protocol Analysis (MEPA 3.0). Internal publication. Department of Educational Sciences, Utrecht University, the Netherlands.
Fan, S. C., & Yu, K. C. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education. 27(1), 107-129. https://doi.org/10.1007/s10798-015-9328-x
Han, S., Capraro, R., & Capraro, M. M., 2015. How science, technology, engineering, and mathematics (stem) project-based learning (Pbl) affects high, middle, and low achievers differently: the impact of student factors on achievement. International Journal Science of Mathematics and Education, 13(5), 1089-1113. https://doi.org/10.1007/s10763-014-9526-0
Henriksen, D., Richardson, C., & Mehta, R. (2017). Design thinking: A creative approach to educational problems of practice. Thinking skills and Creativity, 26, 140–153. https://doi.org/10.1016/j.tsc.2017.10.001
Hernandez, P. R., Bodin, R., Elliott, J. W., Ibrahim, B., Rambo-Hernandez, K. E., Chen, T. W., & de Miranda, M. A. (2014). Connecting the STEM dots: measuring the effect of an integrated engineering design intervention. International Journal of Technology and Design Education, 24(1), 107-120. https://doi.org/10.1007/s10798-013-9241-0
Hidayati, N., Zubaidah, S., Suarsini, E., & Praherdhiono, H. (2019). Examining the relationship between creativity and critical thinking through integrated problem-based learning and digital mind maps. Universal Journal of Education Research, 7(9A), 171-179. https://doi.org/10.13189/ujer.2019.071620
Hite, R., & McIntosh, A. (2020). The affordances of 3D mixed reality in cultivating secondary students’ non-cognitive skills use and development in the engineering design process. In Zheng, R. (Ed.), Cognitive and Affective Perspectives on Immersive Technology in Education (2nd ed., pp. 171-194). IGI Global. https://doi.org/10.4018/978-1-7998-3250-8.ch009
Holt, K.(1990), A method of systematic design, in Cross, N. (Ed.) , Developments in Design Methodology (1st edition). John Wiley & Sons Ltd., Chichester.
Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies, 29(2), 160-180. https://doi.org/10.1016/j.destud.2008.01.001
Hughes, J., & Parkes, S. (2003). Trends in the use of verbal protocol analysis in software engineering research. Behaviour and Information Technology, 22(2), 127-140. https://doi.org/10.1080/0144929031000081341
Jones, J. C.(1984), A method of systematic design, in Cross, N. (ed.) Developments in Design Methodology (1st edition). John Wiley & Sons Ltd., Chichester.
Kelley, T. (2010). Staking the Claim for the. Journal of Technology Studies, 36(1), 2-11.
Kelly, T. R., & Knowles, J. G. (2016). A conceptual framework of integrated STEM education. International Journal of STEM education, 3(1), 1-11. https://doi.org/10.1186/s40594-016-0046-z
Kim, J., & Hahn, J. (1997). Reasoning with multiple diagrams: focusing on the cognitive integration process. In Proceedings of The Nineteenth Annual Conference of Cognitive Science Society (pp. 376-381).
Kim, N., Belland, B. R. , & Axelrod, D. (2019). Scaffolding for optimal challenge in K–12 problem-based learning. Interdisciplinary Journal of Problem-Based Learning, 13(1).https://doi.org/10.7771/1541-5015.1712
Kristensson, P., Magnusson, P. R., & Matthing, J. (2002). Users as a hidden resource for creativity: Findings from an experimental study on user involvement. Creativity and Innovation Management, 11(1), 55-61. https://doi.org/10.1111/1467-8691.00236
Lai, C. S. (2018). Using inquiry-based strategies for enhancing students’ STEM education learning. Journal of Education in Science Environment and Health, 4(1), 110-117.
Lahti, H., & Seitamaa-Hakkarainen, P. (2005). Towards participatory design in craft and design education. CoDesign, 1(2), 103-117. https://doi.org/10.1080/15710880500137496
Li, Y., Huang, Z., Jiang, M., & Chang, T. W. (2016). The effect on pupils’ science performance and problem-solving ability through Lego: An engineering design-based modeling approach. Educational Technology & Society, 19(3), 143-156.
Mayhew, D.J. (1999). The usability engineering lifecycle : A Practitioner's Handbook for User Interface Design. Morgan Kaufmann. https://doi.org/10.1145/632716.632805
Merrill, C., Custer, R. L., Daugherty, J. L., Westrick, M., & Zeng, Y. (2008). Delivering core engineering concepts to secondary level students. Journal of Technology Education, 20(1), 48-64. https://doi.org/10.21061/jte.v20i1.a.4
Millar, G., & Dahl, C. (2011). The power of creativity. ATA Magazine, 9(3).
Morin, S., Robert, J. M., & Gabora, L. (2018). How to train future engineers to be more creative? An educative experience. Thinking Skills and Creativity, 28, 150-166. https://doi.org/10.1016/j.tsc.2018.05.003
Mosely, G., Wright, N., & Wrigley, C. (2018). Facilitating design thinking: A comparison of design expertise. Thinking Skills and Creativity, 27, 177-189. https://doi.org/10.1016/j.tsc.2018.02.004
Nazzal, L. J., & Kaufman, J. C. (2020). The relationship of the quality of creative problem solving stages to overall creativity in engineering students. Thinking Skills and Creativity, 38, 100734. https://doi.org/10.1016/j.tsc.2020.100734
NGSS Lead States. (2013). Next generation science standards: for states, by states. National Academies Press.
Norman, D. (2010). Why Design Education Must Change. Core 77, Retrieved 8 July, 2020, from http://www.core77.com/blog/columns/why_design_education_must_change_17993.asp.
Novak, J. D. (2005). Results and implications of a 12-Year longitudinal study of science concept learning. Research in Science Education, 35(1), 23-40. https://doi.org/10.1007/s11165-004-3431-4
O'Quin, K., & Besemer, S. P. (2006). Using the creative product semantic scale as a metric for results‐oriented business. Creativity and Innovation Management, 15(1), 34-44. https://doi.org/10.1111/j.1467-8691.2006.00367.x
Passow, H. J., & Passow, C. H. (2017). What competencies should undergraduate engineering programs emphasize? A systematic review. Journal of Engineering Education, 106(3), 475-526. https://doi.org/10.1002/jee.20171
Perkins, C., & Murphy, E. (2006). Identifying and measuring individual engagement in critical thinking in online discussions: an exploratory case study. Educational Technology & Society, 9(1), 298-307.
Plucker, J. A., Beghetto, R.A., & Dow, G.T. (2004). Why isn’t creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educational Psychologist. 39(2), 83-96. https://doi.org/10.1207/s15326985ep3902_1
Reiter-Palmon, R., Illies, M. Y., Kobe Cross, L., Buboltz, C., & Nimps, T. (2009). Creativity and domain specificity: The effect of task type on multiple indexes of creative problem-solving. Psychology of Aesthetics, Creativity, and the Arts, 3(2), 73. https://doi.org/10.1037/a0013410
Rhodes, M. (1961). An analysis of creativity. Phi Delta Kappan, 42, 305-310.
RIBA (1965). Handbook of architectural practice and management. RIBA Publications.
Roozenburg, N.F.M., &Eekels, J. (1995) Product design: fundamental and methods. John Wiley& Sons Ltd.
Rose, L. C., Gallup, A. M., Dugger Jr, W. E., & Starkweather, K. N. (2004). The second installment of the ITEA/Gallup poll and what it reveals as to how Americans think about technology: A report of the second survey conducted by the Gallup organization for the International Technology Education Association. The Technology Teacher, 64(1), 1-12.
Salinger, G., & Zuga, K. (2009). Background and history of the STEM movement. In International Technology and Engineering Educators Association (ITEEA) (Ed.), The overlooked STEM imperatives: Technology and engineering (pp. 4-9). ITEEA.
Sanders, M. (2009). STEM, STEM Education, STEMmania. The Technology Teacher. 68(4), 20-27.
Sasson, I., Yehuda, I., & Malkinson, N. (2018). Fostering the skills of critical thinking and question-posing in a project-based learning environment. Thinking Skills and Creativity, 29, 203-212. https://doi.org/10.1016/j.tsc.2018.08.001
Simonton, D. K. (2004). Creativity in science: Chance, logic, genius, and zeitgeist. Cambridge University Press.
Sola, E., Hoekstra, R., Fiore, S., & McCauley, P. (2017). An investigation of the state of creativity and critical thinking in engineering undergraduates. Creative Education, 8(9), 1495-1522. https://doi.org/10.4236/ce.2017.89105
Steen, M. (2013). Co-design as a process of joint inquiry and imagination. Design Issues, 29(2), 16-28. https://doi.org/10.1162/DESI_a_00207
Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. CUP Archive.
Stone, R. B., Wood, K. L. & Crawford, R. H. (2000), A heuristic method for identifying modules for product architectures, Design Studies, 21(1), 5-31. https://doi.org/10.1016/S0142-694X(99)00003-4
Tang, T., Vezzani, V., & Eriksson, V. (2020). Developing critical thinking, collective creativity skills and problem solving through playful design jams. Thinking Skills and Creativity, 37, 100696. https://doi.org/10.1016/j.tsc.2020.100696
Thompson, J. D., Herman, G. L., Scheponik, T., Oliva, L., Sherman, A., Golaszewski, E., ... & Patsourakos, K. (2018). Student misconceptions about cybersecurity concepts: Analysis of think-aloud interviews. Journal of Cybersecurity Education, Research and Practice, 2018(1), 5.
Toulmin, C., & Groome, M. (2007). Building a science, technology, engineering, and math agenda. National Governors Association.
Turner, S. (2013). Teachers’ and pupils’ perceptions of creativity across different key stages. Research in Education, 89, 23-40. https://doi.org/10.7227/RIE.89.1.3
Ulrich, K. T. and Eppinger, S. D. (1995), Product design and development (1st ed.). McGraw-Hill.
Vans, A. M., von Mayrhauser, A., & Somlo, G. (1999). Program understanding behaviour during corrective maintenance of large-scale software. International Journal of Human-Computer Studies, 51, 31-70. https://doi.org/10.1006/ijhc.1999.0268
Wendell, K. B., & Rogers, C. B. (2013). Engineering design-based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540. https://doi.org/10.1002/jee.20026