簡易檢索 / 詳目顯示

研究生: 蕭博允
Hsiao, Po-Yun
論文名稱: 氧化鎢薄膜基底超材料於太赫茲頻段之應用研究
Investigation of WO3 Thin film -Based Metamaterials for THz applications
指導教授: 程金保
Cheng, Chin-Pao
楊承山
Yang, Chan-Shan
口試委員: 程金保
Cheng, Chin-Pao
楊承山
Yang, Chan-Shan
鄧敦平
Teng,Tun-Ping
王星豪
WANG, SHING-HOA
李仰淳
Lee, Yang-Chun
口試日期: 2024/07/30
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 108
中文關鍵詞: 太赫茲直流磁控濺鍍超材料表面電漿共振氧化鎢
英文關鍵詞: terahertz, D.C. Magnetron Sputtering, Metamaterial, Surface plasmon resonance, tungsten oxide
DOI URL: http://doi.org/10.6345/NTNU202401684
論文種類: 學術論文
相關次數: 點閱:224下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

製備精密幾何結構的人工材料,以達到自然界不存在的物理性質,稱為超材料(Metamaterials),一般超材料皆由週期性排列結構組成,因為週期性結構排列使表面電荷提供額外動能,產生表面電漿共振(Surface Plasma Res-onance ,SPR),並運用以及探討在太赫茲頻段的光學特性。
過渡金屬氧化物由於有著可調節的電子和光學特性,讓太赫茲頻段元件在材料上多了一種選擇。本實驗週期性結構以Lift-off製程製備,基板選用高阻值Si基板(電阻率>104 Ω/cm),首先在基板表面覆蓋一層光阻,然後進行曝光和顯影,以製作所需微結構圖案,接著將鎢靶均勻濺鍍在整個基板表面,沉積參數分別在氧氣分壓4.2 SCCM和氬氣25 SCCM,目標電流100 mA的狀態下進行沉積,基板溫度保持室溫,靶材與基板固定距離為9 cm,最後通過化學溶液溶解光阻,連同附著的金屬或其他材料一併去除,留下所需的微結構。本實驗研究氧化鎢(WO3)薄膜在未退火及不同退火溫度下200°C、350°C、500°C的可調介電性質,並使用XRD、FTIR、AFM觀察薄膜表面形貌與微結構,基於氧化鎢的可調光電性質,實驗利用CST Studio Suite®模擬氧化鎢C型環週期性結構在太赫茲頻段下的表面電漿共振性質,並透過太赫茲時域光譜(THz-TDS)量測氧化鎢薄膜超材料結構,並與模擬結果互相比對,以掌握其太赫茲光學性質。經由研究結果發現,在C型環線寬逐漸放大時,共振峰有藍移的趨勢,而不同氧化鎢退火之介電常數,在退火後呈現明顯上升,並由模擬結果驗證,當退火溫度越高,共振峰會往高頻移動。 實驗結果顯示,實做樣品的結果與模擬的共振峰雖有差異,但進一步比對量測數據之共振峰最低點,樣品的頻率接近於模擬的頻率。

Metamaterials are artificially engineered structures designed to achieve physical properties not found in nature. Typically, metamaterials consist of pe-riodically arranged structures, where the periodic arrangement enables surface charges to provide additional energy, resulting in Surface Plasma Resonance (SPR). These materials are explored for their optical properties in the terahertz frequency range.
Transition metal oxides, due to their tunable electronic and optical proper-ties, offer an alternative material choice for terahertz frequency devices. In this experiment, the periodic structures were fabricated using the Lift-off process, with high-resistivity Si substrates (resistivity > 104 Ω/cm) being selected as the base material. First, a layer of photoresist was applied to the substrate surface, followed by exposure and development to create the desired microstructure pat-terns. Next, a tungsten target was uniformly sputtered across the entire substrate surface. The deposition was conducted with an oxygen partial pressure of 4.2 SCCM and an argon flow rate of 25 SCCM, under a target current of 100 mA, while maintaining the substrate temperature at room temperature and a fixed target-to-substrate distance of 9 cm. Finally, the photoresist, along with any at-tached metal or other materials, was removed using a chemical solution, leaving behind the desired microstructures.
This experiment investigates the tunable dielectric properties of tungsten oxide (WO₃) thin films under different annealing temperatures (200°C, 350°C, and 500°C) as well as in the unannealed state. Techniques such as XRD, FTIR, and AFM were used to observe the surface morphology and microstructure of the films. Based on the tunable optoelectronic properties of tungsten oxide, CST Studio Suite® was utilized to simulate the surface plasma resonance properties of a WO₃ C-ring periodic structure in the terahertz frequency range. The te-rahertz optical properties of the WO₃ metamaterial structure were also measured using terahertz time-domain spectroscopy (THz-TDS), and the results were compared with the simulations to understand its terahertz optical properties.
The research findings indicate that as the linewidth of the C-ring gradually increases, there is a tendency for the resonance peak to blue-shift. Additionally, the dielectric constant of tungsten oxide after annealing shows a significant in-crease, and the simulation results confirm that higher annealing temperatures result in a shift of the resonance peak towards higher frequencies. Although there are discrepancies between the experimental results and the simulated res-onance peaks, a closer comparison of the lowest points of the resonance peak in the measured data shows that the frequency of the samples closely matches the simulated frequency.

摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 第二章 文獻探討 4 2.1 太赫茲之特性 4 2.2 超材料 8 2.3 表面電漿共振 12 2.4 氧化鎢之特性 14 2.5 氧化鎢薄膜製備方法 15 2.5.1 濺鍍法(Sputtering) 15 2.5.2 蒸鍍法(Thermal Evaporation) 17 2.5.3 電沉積法 19 2.5.4 溶膠-凝膠法(Sol-Gel Process) 20 2.6 微機電Lift-off製程 21 第三章 實驗方法與步驟 28 3.1 實驗架構 28 3.2 實驗材料 29 3.3 基板前處理 30 3.4 熱處理提升薄膜結晶性質 30 3.5 薄膜特性分析 31 3.5.1 XRD繞射量測分析 31 3.5.2 UV/VIS/NIR分光光譜儀量測分析 32 3.5.3 傅立葉紅外線光譜儀量測分析 32 3.5.4 光學薄膜量測儀 33 3.6 微結構製備 34 3.6.1 光罩設計 36 3.6.2 光阻劑 37 3.6.3 光阻旋塗機 38 3.6.4 熱電板 39 3.6.5 UV曝光機 39 3.6.6 直流/射頻濺鍍系統 40 3.7 太赫茲時域光譜量測 43 3.8 共軛焦顯微鏡量測 44 3.9 原子力顯微鏡 45 第四章 結果與討論 46 4.1 製程參數對氧化鎢薄膜基本特性分析 46 4.1.1 薄膜厚度分析 46 4.1.2 薄膜表面形貌分析 49 4.1.3 結晶狀態分析 52 4.1.4 傅立葉紅外線光譜分析 53 4.2 氧化鎢薄膜近紅外線光學性質分析 55 4.2.1 近紅外線穿透率分析 55 4.2.2 近紅外線反射率分析 58 4.2.3 近紅外線吸收率分析 60 4.3 THz-TDS量測 63 4.3.1 氧化鎢介電常數分析 66 4.4 氧化鎢超材料設計與模擬分析 69 4.4.1 CST模擬設計 69 4.4.2 模擬結果與分析 73 4.4.3 模擬與製程優化 76 4.5 氧化鎢元件量測分析 83 4.5.1 樣品量測與模擬結果比較 83 4.5.2 元件尺寸誤差 89 4.5.3 元件性質比較 92 第五章 結論與未來展望 94 5.1.1 結論 94 5.1.2 未來展望 95 參考文獻 96

[1] O’Hara, J. F., Ekin, S., Choi, W., & Song, I. (2019). A Perspective on Terahertz Next-Generation Wireless Communications. Technologies, 7(2). https://doi.org/10.3390/technologies7020043
[2] Kumar, A., & Radha, R. (2022). Riemann problem for the Chaplygin gas equations for several classes of non-constant initial data. European Journal of Mechanics - B/Fluids, 91, 121-127.
[3] Ullah, Z., Witjaksono, G., Nawi, I., Tansu, N., Irfan Khattak, M., & Junaid, M. (2020). A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications. Sensors (Basel), 20(5). https://doi.org/10.3390/s20051401
[4] Yardimci, N. T., & Jarrahi, M. (2018). Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection. Small, 14(44), e1802437. https://doi.org/10.1002/smll.201802437
[5] Yi, Y., Sun, Z., Li, J., Chu, P. K., & Yu, X. F. (2019). Optical and Optoelectronic Properties of Black Phosphorus and Recent Photonic and Optoelectronic Applications. Small Methods, 3(10). https://doi.org/10.1002/smtd.201900165 Chang, S.-C., & Kempisty, J. M. (2003). Lift-off Methods for Devices. MRS Online Proceedings Library, 729(1), 23. https://doi.org/10.1557/PROC-729-U2.3
[6] Cheng, X., Huang, R., Xu, J., & Xu, X. (2020). Broadband Terahertz Near-Perfect Absorbers. ACS Appl Mater Interfaces, 12(29), 33352-33360. https://doi.org/10.1021/acsami.0c06162
[7] Wang, J., Zhou, J., Guo, K., Shen, F., Zhou, Q., yin, Z., & Guo, Z. (2018). High-efficiency terahertz dual-function devices based on the dielectric metasurface. Superlattices and Microstructures, 120, 759-765. https://doi.org/10.1016/j.spmi.2018.06.047
[8] Veselago, V. (1967). The electrodynamics of substances with simultaneously negative values of and. Usp. fiz. nauk, 92(3), 517-526.
[9] Lee, K. S., Son, J. M., Jeong, D. Y., Lee, T. S., & Kim, W. M. (2010). Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach. Sensors (Basel), 10(12), 11390-11399. https://doi.org/10.3390/s101211390
[10] Polaczek, A., Pekala, M., & Obuszko, Z. (1994). Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides. Journal of Physics: Condensed Matter, 6(39), 7909.
[11] Y.A. Wei, (2020). Magnetically Tunable Terahertz Phase Modulator Based on the Ferrofluid, National Taiwan Normal University, Master,.
[12] Sadeghi, A., Naghavi, S. M. H., Mozafari, M., & Afshari, E. (2023). Nanoscale biomaterials for terahertz imaging: A non-invasive approach for early cancer detection. Transl Oncol, 27, 101565. https://doi.org/10.1016/j.tranon.2022.101565
[13] Fischer, B. M., Hoffmann, M., Helm, H., Wilk, R., Rutz, F., Kleine-Ostmann, T., Koch, M., & Jepsen, P. U. (2005). Terahertz time-domain spectroscopy and imaging of artificial RNA. Optics Express, 13(14), 5205-5215.
[14] Rikkinen, K., Kyosti, P., Leinonen, M. E., Berg, M., & Parssinen, A. (2020). THz Radio Communication: Link Budget Analysis toward 6G. IEEE Communications Magazine, 58(11), 22-27. https://doi.org/10.1109/mcom.001.2000310
[15] STakase, S., Yamada, K., Nakagawa, Y., Oka, C., Sakurai, J., & Hata, S. (2023). Thick film MEMS process using reverse lift-off. Microelectronic Engineering, 281, 112081.
[16] Nüßler, D., & Jonuscheit, J. (2020). Terahertz based non-destructive testing (NDT). tm - Technisches Messen, 88(4), 199-210. https://doi.org/10.1515/teme-2019-0100
[17] Cristofani, E., Friederich, F., Wohnsiedler, S., Matheis, C., Jonuscheit, J., Vandewal, M., & Beigang, R. (2014). Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection. Optical Engineering, 53(3). https://doi.org/10.1117/1.Oe.53.3.031211
[18] Pałka, N., Rybak, A., Jakubowski, T., Florkowski, M., Kowalski, M., Zagrajek, P., Życzkowski, M., Ciurapiński, W., Jodłowski, L., & Walczakowski, M. (2020). Monitoring of air voids at plastic-metal interfaces by terahertz radiation. Infrared Physics & Technology, 104. https://doi.org/10.1016/j.infrared.2019.103119
[19] Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., Niyato, D., Dobre, O., & Poor, H. V. (2022). 6G Internet of Things: A Comprehensive Survey. IEEE Internet of Things Journal, 9(1), 359-383. https://doi.org/10.1109/jiot.2021.3103320
[20] Amodu, O. A., Jarray, C., Busari, S. A., & Othman, M. (2023). THz-enabled UAV communications: Motivations, results, applications, challenges, and future considerations. Ad Hoc Networks, 140. https://doi.org/10.1016/j.adhoc.2022.103073
[21] Jawad, A. T., Maaloul, R., & Chaari, L. (2023). A comprehensive survey on 6G and beyond: Enabling technologies, opportunities of machine learning and challenges. Computer Networks, 237. https://doi.org/10.1016/j.comnet.2023.110085
[22] Nakamura, T. (2020). 5G Evolution and 6G. 2020 IEEE symposium on VLSI technology,
[23] Wang, S., Tang, C., Pan, T., & Gao, L. (2006). Effectively negatively refractive material made of negative-permittivity and negative-permeability bilayer. Physics Letters A, 351(6), 391-397. https://doi.org/https://doi.org/10.1016/j.physleta.2005.11.025
[24] Pendry, J. B., Holden, A., Stewart, W., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical review letters, 76(25), 4773.
[25] Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques, 47(11), 2075-2084.
[26] Zamzam, P., & Rezaei, P. (2021). A terahertz dual-band metamaterial perfect absorber based on metal-dielectric-metal multi-layer columns. Optical and Quantum Electronics, 53(2). https://doi.org/10.1007/s11082-021-02766-6
[27] Fang, N., & Xiang, Z. (2002). Imaging properties of a metamaterial superlens Proceedings of the 2nd IEEE Conference on Nanotechnology,
[28] Xu, W., Xie, L., & Ying, Y. (2017). Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale, 9(37), 13864-13878. https://doi.org/10.1039/c7nr03824k
[29] Huff, M. (2020). Process variations in microsystems manufacturing. Springer International Publishing.
[30] Sun, Y., Shi, Y., Liu, X., Song, J., Li, M., Wang, X., & Yang, F. (2021). A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure. Nanoscale Adv, 3(14), 4072-4078. https://doi.org/10.1039/d1na00246e
[31] Du, C., Zhou, D., Guo, H. H., Pang, Y. Q., Shi, H. Y., Liu, W. F., Su, J. Z., Singh, C., Trukhanov, S., Trukhanov, A., Panina, L., & Xu, Z. (2020). An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Nanoscale, 12(17), 9769-9775. https://doi.org/10.1039/c9nr10668e
[32] Liu, Y., Sun, F., Yang, Y., Hao, Y., Liang, S., & Wang, Z. (2023). A metamaterial-free omnidirectional invisibility cloak based on thrice transformations inside optic-null medium. Optics & Laser Technology, 157. https://doi.org/10.1016/j.optlastec.2022.108779
[33] Smith, D. R., Pendry, J. B., & Wiltshire, M. C. (2004). Metamaterials and negative refractive index. science, 305(5685), 788-792.
[34] Geddes, C. D. (2012). Reviews in plasmonics 2010. Springer.
[35] Pitarke, J. M., Silkin, V. M., Chulkov, E. V., & Echenique, P. M. (2007). Theory of surface plasmons and surface-plasmon polaritons. Reports on Progress in Physics, 70(1), 1-87. https://doi.org/10.1088/0034-4885/70/1/r01
[36] Kumar, G., & Sarswat, P. K. (2016). Interaction of surface plasmon polaritons with nanomaterials. Reviews in Plasmonics 2015, 103-129.
[37] Ritchie, R. H. (1957). Plasma Losses by Fast Electrons in Thin Films. Physical Review, 106(5), 874-881. https://doi.org/10.1103/PhysRev.106.874
[38] Hutter, E., & Fendler, J. H. (2004). Exploitation of Localized Surface Plasmon Resonance. Advanced Materials, 16(19), 1685-1706.
[39] Mayer, K. M., & Hafner, J. H. (2011). Localized surface plasmon resonance sensors. Chem Rev, 111(6), 3828-3857. https://doi.org/10.1021/cr100313v
[40] Yan, L., Yan, Y., Xu, L., Ma, R., Jiang, F., & Xu, X. (2016). Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology. Applied Surface Science, 367, 563-568. https://doi.org/10.1016/j.apsusc.2016.01.238
[41] Li, Y., Wei, J., Sun, Z., Yang, T., Liu, Z., Chen, G., Zhao, L., & Cheng, Z. (2022). Greatly enhanced photocurrent density in bismuth ferrite films by Localized Surface Plasmon Resonance effect. Applied Surface Science, 583. https://doi.org/10.1016/j.apsusc.2022.152571
[42] Dutta, V., Sharma, S., Raizada, P., Thakur, V. K., Khan, A. A. P., Saini, V., Asiri, A. M., & Singh, P. (2021). An overview on WO3 based photocatalyst for environmental remediation. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.105018
[43] Bange, K. (1999). Colouration of tungsten oxide films: a model for optically active coatings. Solar energy materials and solar cells, 58(1), 1-131.
[44] Liu, H., Xu, Y., Zhang, X., & Wei, F. (2023). Influence of structural orientation of tungsten oxide films on gas sensing properties. Sensors and Actuators A: Physical, 349. https://doi.org/10.1016/j.sna.2022.114021
[45] Saito, Y., Uchida, S., Kubo, T., & Segawa, H. (2010). Surface-oxidized tungsten for energy-storable dye-sensitized solar cells. Thin Solid Films, 518(11), 3033-3036. https://doi.org/10.1016/j.tsf.2009.09.191
[46] Meng, Q., Cao, S., Guo, J., Wang, Q., Wang, K., Yang, T., Zeng, R., Zhao, J., & Zou, B. (2023). Sol-gel-based porous Ti-doped tungsten oxide films for high-performance dual-band electrochromic smart windows. Journal of Energy Chemistry, 77, 137-143. https://doi.org/10.1016/j.jechem.2022.10.047
[47] Matthias, B., & Wood, E. A. (1951). Low Temperature Polymorphic Transformation in WO3. Physical Review, 84(6), 1255.
[48] Woodward, P., Sleight, A., & Vogt, T. (1995). Structure refinement of triclinic tungsten trioxide. Journal of Physics and Chemistry of Solids, 56(10), 1305-1315.
[49] Cazzanelli, E., Vinegoni, C., Mariotto, G., Kuzmin, A., & Purans, J. (1999). Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content. Solid State Ionics, 123(1), 67-74. https://doi.org/https://doi.org/10.1016/S0167-2738(99)00101-0
[50] Kumar, A., & Radha, R. (2022). Riemann problem for the Chaplygin gas equations for several classes of non-constant initial data. European Journal of Mechanics - B/Fluids, 91, 121-127. https://doi.org/10.1016/j.euromechflu.2021.09.013
[51] Granqvist, C. G. (1995). Handbook of inorganic electrochromic materials. Elsevier.
[52] Greenwood, N. N., & Earnshaw, A. (2012). Chemistry of the Elements. Elsevier. Butterworth-Heinemann.
[53] Zayim, E., & Tabatabaei Mohseni, A. (2016). Structural and Optical Properties of Tungsten Oxide Based Thin Films and Nanofibers. Low-Dimensional and Nanostructured Materials and Devices: Properties, Synthesis, Characterization, Modelling and Applications, 291-307.
[54] Smith, D. L., & Hoffman, D. W. (1996). Thin‐Film Deposition: Principles and Practice. In: American Institute of Physics.
[55] Reddy G V, A., Naveen Kumar, K., Sattar, S. A., Shetty, H. D., Guru Prakash, N., Imran Jafri, R., Devaraja, C., B C, M., C S, K., Premkumar, R., & Ansar, S. (2023). Effect of post annealing on DC magnetron sputtered tungsten oxide (WO3) thin films for smartwindow applications. Physica B: Condensed Matter, 664. https://doi.org/10.1016/j.physb.2023.414996
[56] Park, Y. J., Kang, K.-M., Kang, J. H., Lee, D., Na, S. H., Han, S. H., Nah, Y.-C., & Kim, D. H. (2022). Structure and electrochromic properties of WO3 thin films by direct current, pulsed direct current, and radio frequency magnetron sputtering from metallic and ceramic targets. Thin Solid Films, 763. https://doi.org/10.1016/j.tsf.2022.139596
[57] Kumar, K. N., Sattar, S. A., Shaik, H., G V, A. R., Jafri, R. I., Dhananjaya, M., Pawar, A. S., Prakash, N. G., Premkumar, R., Ansar, S., Chandrashekar, L. N., & Aishwarya, P. (2023). Effect of partial pressure of oxygen, target current, and annealing on DC sputtered tungsten oxide (WO3) thin films for electrochromic applications. Solid State Ionics, 399.
[58] Gudmundsson, J. T., Brenning, N., Lundin, D., & Helmersson, U. (2012). High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology A, 30(3).
[59] El-Nahass, M. M., Saadeldin, M. M., Ali, H. A. M., & Zaghllol, M. (2015). Electrochromic properties of amorphous and crystalline WO3 thin films prepared by thermal evaporation technique. Materials Science in Semiconductor Processing, 29, 201-205. https://doi.org/10.1016/j.mssp.2014.02.051
[60] Li, S., Yao, Z., Zhou, J., Zhang, R., & Shen, H. (2017). Fabrication and characterization of WO 3 thin films on silicon surface by thermal evaporation. Materials Letters, 195, 213-216. https://doi.org/10.1016/j.matlet.2017.02.078
[61] Meulenkamp, E. A. (2019). Mechanism of  WO 3 Electrodeposition from Peroxy‐Tungstate Solution. Journal of The Electrochemical Society, 144(5), 1664-1671. https://doi.org/10.1149/1.1837657
[62] Huang, D., Wang, L., & Xue, Q. (2011). Deposition of WO3 doped amorphous hydrogenated carbon film by using liquid phase electrodeposition technique and its mechanical properties. Solid State Sciences, 13(3), 653-657. https://doi.org/10.1016/j.solidstatesciences.2010.12.012
[63] Sun, Y., Zhang, Y., Zhou, Z., Zhao, B., Liu, Z., Dong, X., & Feng, S. (2024). Electrodeposition fabrication of WO3/EuMOF film for fluorescence switch. Inorganic Chemistry Communications, 165. https://doi.org/10.1016/j.inoche.2024.112536
[64] Sharbatdaran, M., Novinrouz, A., & Nour, K. H. (2006). Preparation and characterization of WO₃ electrochromic films obtained by the sol-gel process. Journal Name, Volume(Issue), pages.
[65] Krings, L., & Talen, W. (1998). Wet chemical preparation and characterization of electrochromic WO3. Solar energy materials and solar cells, 54(1-4), 27-37.
[66] Deepa, M., Singh, D. P., Shivaprasad, S. M., & Agnihotry, S. A. (2007). A comparison of electrochromic properties of sol–gel derived amorphous and nanocrystalline tungsten oxide films. Current Applied Physics, 7(2), 220-229. https://doi.org/10.1016/j.cap.2006.06.001
[67] Bogue, R. (2007). MEMS sensors: past, present and future. Sensor Review, 27(1), 7-13.
[68] Chircov, C., & Grumezescu, A. M. (2022). Microelectromechanical Systems for Biomedical Applications. Micromachines (Basel), 13(2). https://doi.org/10.3390/mi13020164
[69] Shaeffer, D. K. (2013). MEMS inertial sensors: A tutorial overview. IEEE Communications Magazine, 51(4), 100-109.
[70] Berman, D., & Krim, J. (2013). Surface science, and NEMS: Progress and opportunities for surface science research performed on, or by, microdevices. Progress in Surface Science, 88(2), 171-211. https://doi.org/10.1016/j.progsurf.2013.03.001
[71] Colmiais, I., Silva, V., Borme, J., Alpuim, P., & Mendes, P. M. (2022). Towards RF graphene devices: a review. FlatChem, 35, 100409.
[72] Li, P., Ye, Z., Yang, S., Yang, B., & Wang, L. (2024). An experimental study on dynamic response of cement concrete pavement under vehicle load using IoT acceleration sensor network. Measurement, 229. https://doi.org/10.1016/j.measurement.2024.114502
[73] Chang, S.-C., & Kempisty, J. M. (2003). Lift-off Methods for Devices. MRS Online Proceedings Library, 729(1), 23.
[74] Watanabe, S., Sakurai, J., & Hata, S. (2015). Fabrication of Cu–Zr–Ti thick film metallic glass structure by double metal mask lift-off process. Microelectronic Engineering, 135, 45-51. https://doi.org/10.1016/j.mee.2015.02.041
[75] Takase, S., Yamada, K., Nakagawa, Y., Oka, C., Sakurai, J., & Hata, S. (2023). Thick film MEMS process using reverse lift-off. Microelectronic Engineering, 281, 112081.
[76] Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design and applications. Smart materials and Structures, 10(6), 1115.
[77] Joraid, A., & Alamri, S. (2007). Effect of annealing on structural and optical properties of WO3 thin films prepared by electron-beam coating. Physica B: Condensed Matter, 391(2), 199-205.
[78] Zheng, H., Ou, J. Z., Strano, M. S., Kaner, R. B., Mitchell, A., & Kalantar‐zadeh, K. (2011). Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications. Advanced Functional Materials, 21(12), 2175-2196. https://doi.org/10.1002/adfm.201002477
[79] Joraid, A. A., & Alamri, S. N. (2007). Effect of annealing on structural and optical properties of WO3 thin films prepared by electron-beam coating. Physica B: Condensed Matter, 391(2), 199-205. https://doi.org/10.1016/j.physb.2006.09.010
[80] Ng, C., Ng, Y. H., Iwase, A., & Amal, R. (2013). Influence of annealing temperature of WO3 in photoelectrochemical conversion and energy storage for water splitting. ACS Appl Mater Interfaces, 5(11), 5269-5275. https://doi.org/10.1021/am401112q
[81] Dao, T. B. T., Pham, K. N., Cheng, Y.-L., Kim, S. S., & Phan, B. T. (2014). Correlation between crystallinity and resistive switching behavior of sputtered WO3 thin films. Current Applied Physics, 14(12), 1707-1712.
[82] Sharma, N., Deepa, M., Varshney, P., & Agnihotry, S. (2002). FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol–gel technique. Journal of non-crystalline solids, 306(2), 129-137.
[83] Mehmood, F., Pachter, R., Murphy, N. R., Johnson, W. E., & Ramana, C. V. (2016). Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations. Journal of Applied Physics, 120(23). https://doi.org/10.1063/1.4972038
[84] Acosta, M., González, D., & Riech, I. (2009). Optical properties of tungsten oxide thin films by non-reactive sputtering. Thin Solid Films, 517(18), 5442-5445.
[85] Nair, A. S., C S, K., K, S., Kumar, A. S., Unnikrishnan, N. V., & A C, S. (2023). Enhancing the NIR shielding ability and controlling the surface wettability of RF magnetron sputter deposited WO3-x thin films by tuning the oxygen vacancies. Optical Materials, 142. https://doi.org/10.1016/j.optmat.2023.114066
[86] Johansson, M. B., Zietz, B., Niklasson, G. A., & Österlund, L. (2014). Optical properties of nanocrystalline WO3 and WO3-x thin films prepared by DC magnetron sputtering. Journal of Applied Physics, 115(21). https://doi.org/10.1063/1.4880162
[87] Jana, A., Khot, A. C., Rane, S., Sajeev, V., Dongale, T. D., Kim, T. G., & Roy Chowdhury, D. (2023). Room-temperature-grown tungsten oxide hybridized dipole cavities to realize thermally tunable terahertz surface plasmons. Optical Materials, 143. https://doi.org/10.1016/j.optmat.2023.114274
[88] Withayachumnankul, W., Fischer, B. M., & Abbott, D. (2008). Numerical removal of water vapour effects from terahertz time-domain spectroscopy measurements. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2097), 2435-2456. https://doi.org/10.1098/rspa.2007.0294
[89] Lin, B., Lan, C., Li, C., & Chen, Z. (2014). Effect of thermal annealing on the performance of WO3–Ag–WO3 transparent conductive film. Thin Solid Films, 571, 134-138. https://doi.org/https://doi.org/10.1016/j.tsf.2014.10.045
[90] Song, Z., Zhao, Z., Zhao, H., Peng, W., He, X., & Shi, W. (2015). Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators. Journal of Applied Physics, 118(4). https://doi.org/10.1063/1.4927845
[91] Zheng, X., Zhao, Z., Peng, W., Zhao, H., Zhang, J., Luo, Z., & Shi, W. (2017). Suppression of terahertz dipole oscillation in split-ring resonators deformed from square to triangle. Applied Physics A, 123(4). https://doi.org/10.1007/s00339-017-0904-7
[92] Alsalman, O., Wekalao, J., Arun Kumar, U., Agravat, D., Parmar, J., & Patel, S. K. (2024). Design of split ring resonator graphene metasurface sensor for efficient detection of brain tumor. Plasmonics, 19(1), 523-532.
[93] Lide, D. R. (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.
[94] Sze, S. M., Li, Y., & Ng, K. K. (2021). Physics of semiconductor devices. John wiley & sons.
[95] Ung, B., Dupuis, A., Stoeffler, K., Dubois, C., & Skorobogatiy, M. (2010). High refractive index composite materials for THz waveguides: trade-off between index contrast and absorption loss. arXiv preprint arXiv:1009.2667.
[96] Rai-Choudhury, P. (1997). Handbook of Microlithography, Micromachining, and Microfabrication: Micromachining and Microfabrication (Vol. 2). IET.
[97] Huff, M. (2020). Process variations in microsystems manufacturing. Springer.
[98] Song, Z., Zhao, Z., Zhao, H., Peng, W., He, X., & Shi, W. (2015). Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators. Journal of Applied Physics, 118(4).
[99] Sun, H., & Lin, Y.-S. (2023). Tunable terahertz metamaterial with multi-resonance characteristic for refractive index sensing application. APL Materials, 11(8).

下載圖示
QR CODE