簡易檢索 / 詳目顯示

研究生: 孫靖茹
Sun, Jing-Ru
論文名稱: 用於體積探索的交互式遮擋移除系統
Interactive Occlusion-Free System for Volume Exploration
指導教授: 王科植
Wang, Ko-Chih
口試委員: 紀明德
Chi, Ming-Te
王超
Wang, Chao
王科植
Wang, Ko-Chih
口試日期: 2022/09/22
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 41
中文關鍵詞: 遮擋體積渲染交互式技術
英文關鍵詞: Occlusion, Volume Rendering, Interaction Techniques
DOI URL: http://doi.org/10.6345/NTNU202201788
論文種類: 學術論文
相關次數: 點閱:153下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遮擋問題是體積資料中可能存在無法被發現的重要隱藏特徵。這是將體積渲染
    到2D 屏幕時會遇到的主要問題。過去已經提出了許多技術,例如調整傳遞函數、等值面提取等,以解決遮擋問題並幫助專家探索體積資料。然而,對於沒有多少先驗知識的非專家用戶來說,很難花數小時學習相關信息,例如如何調整傳遞函數或不透明度與體積數據之間的關係。目前給非專家用戶的現有系統仍然需要用戶理解不透明度函數。因此,我們提出了一種漸進式的挖掘交互以允許非專家用戶探索的方法,這些方法更直觀,更接近日常生活行為。我們還提供材質結構的導覽視圖,使非專家用戶能夠以最少的先驗知識開始使用體積探索系統。此外,我們通過案例研究收集多個領域的用戶反饋,以說明我們系統的可用性、實用性和適用性。

    The occlusion problem is possible that there are potentially critical hidden features in the volumetric data that cannot be discovered. This is the primary problem when rendering volumes to 2D screens. Numerous techniques, such as tuning the transfer function (TF), isosurface extraction, etc., have been proposed in the past to address the occlusion problem and assist experts in exploring volumetric data. However, it is difficult for non-expert users with little prior knowledge to spend hours learning related information, such as how to tune the TF or the relation between opacity and volumetric data. Existing systems for non-expert users still need users to comprehend the opacity function. Therefore, we propose a progressive digging interaction to allow non-expert users’ exploration approach, which is intuitive and closer to daily life behavior. We also provide a navigation view of the feature structure and enable non-expert users to begin using the volume exploration system with minimum prior knowledge. In addition, we collect user feedback in several fields through case studies to illustrate our system’s usability, practicality, and applicability.

    Chinese Abstract i English Abstract ii Dedication iii Acknowledgments iv Chapter 1. Introduction 1 Chapter 2. Related Work 4 2.1 Feature Extraction 4 2.2 Occlusion Management 6 2.3 Interactive Visualization 7 Chapter 3. Algorithm Overview 8 3.1 Material Structure Pre-Computation 10 3.2 Obstruction Selection 12 3.3 Occlusion Removal Modes 13 3.3.1 Local Digging Structure Mode 14 3.3.2 Global Erasing Structure Mode 16 Chapter 4. Interactive Exploration System 19 Chapter 5. Case Studies 22 5.1 Teapot : The hidden species inside 22 5.2 Kidneys : Recognizing the existence of a tumor 23 5.3 Atom : Simulation of atomic orbits as illustrated 25 5.4 Human CT : With different lens shapes 27 Chapter 6. User Feedback 30 Chapter 7. Discussion 33 7.1 Transfer Function Design 33 7.2 Material Numbers 34 Chapter 8. Conclusion and Future Works 37 Bibliography 38

    [1] Iago Berndt, Rafael Torchelsen, and Anderson Maciel. Efficient surgical cutting with position-based dynamics. IEEE Computer Graphics and Applications, 37(3):24 – 31, 2017.
    [2] Asmund Birkeland and Ivan Viola. View-dependent peel-away visualization for volumetric data. In Proceedings of the 25th Spring Conference on Computer Graphics, SCCG ’09, page 121–128, 2009.
    [3] Stefan Bruckner and Torsten Moller. Isosurface similarity maps. Eurographics/IEEE-VGTC Symposium on Visualization, 29(3):773–782, June 2010.
    [4] Tan Chi Ho and Jung-Hong Chuang. Volume based mesh segmentation. Journal of Information Science and Engineering, 28, 07 2012.
    [5] Pei-Ying Chiang, Chun-Chi Chen, and Chih-Hsien Hsia. A touchless interaction interface for observing medical imaging. Journal of Visual Communication and Image Representation, 58:363–373, 2019.
    [6] CIBC, 2016. ImageVis3D: An interactive visualization software system for largescale volume data. Scientific Computing and Imaging Institute (SCI), Download from: http://www.imagevis3d.org.
    [7] Carlos D. Correa. Illustrative deformation of volumetric objects and other graphical models. 2007.
    [8] Carlos D. Correa and Kwan-Liu Ma. Visibility histograms and visibility-driven transfer functions. IEEE Transactions on Visualization and Computer Graphics, 17(2):192–204, February 2011.
    [9] Carlos D. Correa, Deborah Silver, and Min Chen. Discontinuous displacement mapping for volume graphics. Fifth Eurographics / IEEE VGTC Workshop on Volume Graphics 2006, pages 9 – 16, 2006.
    [10] Carlos D. Correa, Deborah Silver, and Min Chen. Feature aligned volume manipulation for illustration and visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5):1069 – 1076, 2006.
    [11] Jian Cui, Paul Rosen, Voicu Popescu, and Christoph Hoffmann. A curved ray camera for handling occlusions through continuous multiperspective visualization. IEEE Transactions on Visualization and Computer Graphics, 16(6):1235–1242, 2010.
    [12] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. SIGGRAPH Comput. Graph., 22(4):65–74, jun 1988.
    [13] Niklas Elmqvist and Philippas Tsigas. A taxonomy of 3d occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics, 14(5):1095–1109, 2018.
    [14] Runzhen Huang and Kwan-Liu Ma. Rgvis: region growing based techniques for volume visualization. 11th Pacific Conference on Computer Graphics and Applications, 2003. Proceedings., pages 355–363, October 2003.
    [15] Christophe Hurter, A. Russel Taylor, Sheelagh Carpendale, and Alexandru Telea. Interactive exploration and selection in volumetric datasets with color tunneling. In Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST’14 Adjunct, page 49–50, 2014.
    [16] Cheuk Yiu Ip, Amitabh Varshney, and Joseph JaJa. Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Transactions on Visualization and Computer Graphics, 18(12):2355–2363, 2012.
    [17] C. Li, Ohio State University. Department of Computer Science, and Engineering. Interactive Data Deformation Techniques to Improve Feature Visibility in Scientific Visualization. Ohio State University, 2018.
    [18] Cheng Li and Han-Wei Shen. Object-in-hand feature displacement with physically based deformation. In 2019 IEEE Pacific Visualization Symposium (PacificVis), pages 21–30, 2019.
    [19] Cheng Li, Xin Tong, and Han-Wei Shen. Virtual retractor: An interactive data exploration system using physically based deformation. IEEE Pacific Visualization Symposium (PacificVis), pages 51–60, 2017.
    [20] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, aug 1987.
    [21] Claes Lundstrom, Thomas Rydell, Camilla Forsell, Anders Persson, and Anders Ynnerman. Multi-touch table system for medical visualization: Application to orthopedic surgery planning. IEEE Transactions on Visualization and Computer Graphics, 17(12):1775–1784, 2011.
    [22] Bo Ma and Alireza Entezari. Volumetric feature-based classification and visibility analysis for transfer function design. IEEE Transactions on Visualization and Computer Graphics, 24(12):3253 – 3267, December 2018.
    [23] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for 3d mesh approximate convex decomposition. In 2009 16th IEEE International Conference on Image Processing (ICIP), pages 3501–3504, 2009.
    [24] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for 3d mesh approximate convex decomposition. In 2009 16th IEEE international conference on image processing (ICIP), pages 3501–3504. IEEE, 2009.
    [25] Iason Manolas, Aris S. Lalos, and Konstantinos Moustakas. Parallel 3d skeleton extraction using mesh segmentation. In 2018 International Conference on Cyberworlds (CW), pages 172–175, 2018.
    [26] Fabio Marton, Marcos Balsa Rodriguez, Fabio Bettio, Marco Agus, Alberto Jaspe Villanueva, and Enrico Gobbetti. Isocam: Interactive visual exploration of massive cultural heritage models on large projection setups. J. Comput. Cult. Herit., 7(2), jun 2014.
    [27] Michael J. McGuffin, Liviu Tancau, and Ravin Balakrishnan. Using deformations for browsing volumetric data. IEEE Visualization, pages 401–408, October 2003.
    [28] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.
    [29] Megumi Nakao, Kei Wai Cecilia Hung, Satoshi Yano, Koji Yoshimura, and Kotaro Minato. Adaptive proxy geometry for direct volume manipulation. IEEE Pacific Visualization Symposium (PacificVis), pages 1069 – 1076, 2010.
    [30] The Editors of Encyclopaedia Britannica. Rutherford model.
    [31] Rui S. V. Rodrigues, Jose F. M. Morgado, and Abel J. P. Gomes. Part-based mesh segmentation: A survey. Computer Graphics Forum, 37(6):235–274, 2018.
    [32] C. E. SHANNON. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379–423, 623–656, 1948.
    [33] Sergej Stoppel and Stefan Bruckner. Smart surrogate widgets for direct volume manipulation. IEEE Pacific Visualization Symposium (PacificVis), pages 36–45, 2018.
    [34] C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann. Interactive lenses for visualization: An extended survey. Computer Graphics Forum, 36(6):173–200, 2017.
    [35] Michael Traore, Christophe Hurter, and Alexandru Telea. Interactive obstruction-free lensing for volumetric data visualization. IEEE Transactions on Visualization and Computer Graphics, 25(1):1029 – 1039, 2019.
    [36] David Le Vay, James Scott Robson, and G.A.G Mitchell. Renal system.
    [37] Song Wang, Dong Zhu, Hao Yu, and Yadong Wu. Immersive wysiwyg (what you see is what you get) volume visualization. In 2020 IEEE Pacific Visualization Symposium (PacificVis), pages 166–170, 2020.
    [38] Yunhai Wang, Jian Zhang, Wei Chen, Huai Zhang, and Xuebin Chi. Efficient opacity specification based on feature visibilities in direct volume rendering. Computer Graphics Forum, 30(7):2117–2126, 2011.
    [39] Tzu-Hsuan Wei, Teng-Yok Lee, and Han-Wei Shen. Evaluating isosurfaces with level-set-based information maps. Computer Graphics Forum, pages 1–10, 2013.
    [40] Alexander Wiebel, Frans M. Vos, David Foerster, and Hans-Christian Hege. Wysiwyp: What you see is what you pick. IEEE Transactions on Visualization and Computer Graphics, 18(12):2236–2244, December 2012.
    [41] Meng-LinWu and Voicu Popescu. Multiperspective focus+context visualization. IEEE Transactions on Visualization and Computer Graphics, 22(5):1555–1567, 2016.
    [42] Yingcai Wu and Huamin Qu. Interactive transfer function design based on editing direct volume rendered images. IEEE Transactions on Visualization and Computer Graphics, 13(5):1027–1040, 2007.
    [43] Dehui Xiang, Jie Tian, Fei Yang, Qi Yang, Xing Zhang, Qingde Li, and Xin Liu. Skeleton cuts—an efficient segmentation method for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 17(9):1295–1306, 2011.
    [44] Chaoqing Xu, Guodao Sun, and Ronghua Liang. A survey of volume visualization techniques for feature enhancement. Visual Informatics, 5(3):70–81, 2021.

    下載圖示
    QR CODE