簡易檢索 / 詳目顯示

研究生: 黃立翰
論文名稱: 相變化奈米微影製程在超穎物質之研究
Phase change nanolithography for Meta-material devices
指導教授: 蔡定平
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 奈米光學表面電漿超穎材料
論文種類: 學術論文
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用超快脈衝光源雷射波長800nm,藉由控制高精度奈米壓電移動台,以及高倍率高數值孔徑的油鏡(100x, NA:1.4) 將雷射光聚焦至相變化薄膜Ge2Sb2Te5。我們可以控制奈米移動台在相變化薄膜上寫下結晶態的二維結構,從實驗結果我們製備圓陣列、手性結構、網狀結構。
    同時我們也對不同相態的相變化薄膜Ge2Sb2Te5進行乾式蝕刻與濕式蝕刻的研究。並利用乾式蝕刻與濕式蝕刻對不同相態的相變化薄膜有良好的選擇性,可以將原本製備在相變化薄膜Ge2Sb2Te5上的圖案轉印至金薄膜上。
    此方法可以應用在奈米學方面的研究,除了對於目前科學研究,未來也可以藉由本方法製備出商業化的表面電漿的光學元件或裝置。

    In this thesis, we use Ti:sapphire laser with wavelength 800nm, and focus the laser on phase-change Ge2Sb2Te5 thin film by high magnification and high number aperture oil objective lens(100x, NA:1.4). By controlling the high precision piezo nano-stage, we can product any crystalline two-dimensional structure on as-deposited state of Ge2Sb2Te5 thin film. The result of the experiment shows that we can fabricate the holes array, chiral structure, and net structure.
    In addition to discussing the role of laser and phase-change material, we also studied selective etching properties between as-deposited and crystalline phase of Ge2Sb2Te5 alloy film carried out with an alkaline etching solution of NaOH and an inert gas of Argon. Finally we can transfer the pattern on thin film Ge2Sb2Te5 to thin film gold by good selective etching properties between different phases of Ge2Sb2Te5 thin film.
    The method can be applied in the field of Nano Optics, and it is also a cost-effective tool to fabricate the commercial metamaterial device in the future.

    目錄 致謝 Ⅰ 中文摘要 Ⅱ 英文摘要 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 第一章、緒論 1 1-1 前言 1 1-2 超穎物質簡介 1 1-3 超穎物質製作簡介 3 1-4 熱微影術 4 1-5 相變化材料特性 5 1-5-1 相變化 5 1-5-2 結晶過程 8 1-5-3 相變化材料發展 9 1-5-4 鍺銻碲(Ge2Sb2Te5)相變化材料之結構與特性 12 1-6 蝕刻技術 14 1-6-1 濕蝕刻 14 1-6-2 乾蝕刻 15 第二章、實驗架構與原理 17 2-1 前言 17 2-2 濺鍍機 17 2-2-1 濺鍍機簡介 17 2-2-2 濺鍍機工作原理 18 2-2-2-1 直流二極濺鍍法 (DC-diode Sputtering) 18 2-2-2-2 射頻濺鍍法 (RF Sputtering) 19 2-2-2-3 實驗樣品的製備 19 2-3 相變化熱微影製程設計 21 2-3-1 熱微影原理 21 2-3-2 超穎物質製作流程 21 2-4 光熱微影系統 23 2-4-1 超短脈衝雷射 26 2-4-2 高功率可調式衰減器 27 2-4-3 快門以及控制器(Shutter and Drive) 28 2-4-4 光擴束系統及空間濾波器 30 2-4-5 線偏振片 30 2-4-6 λ/4波長板 31 2-4-7 油鏡(Oil-Immersion Objective) 31 2-4-8 三軸奈米平移台及驅動器 33 2-5原子力顯微儀 34 2-5-1 原子力顯微儀簡介 34 2-5-2 原子力顯微儀之工作模式 35 2-5-2-1 接觸式 (contact mode) 35 2-5-2-2 非接觸式 (non-contact mode) 36 2-5-2-3 輕敲式 (tapping mode) 36 2-5-3 儀器架構 37 2-5-4 實驗樣品掃探 38 第三章、實驗結果與討論 39 3-1 前言 39 3-2 熱微影實驗 39 3-2-1 雷射功率量測 39 3-2-2 膜層厚度設計實驗 41 3-3 濕式蝕刻 48 3-3-1 腐蝕加工後GST薄膜表面觀察 48 3-4 乾式蝕刻 53 3-5 人工奈米平面圖案製作 54 第四章、結論 63 參考文獻 65

    [1] R.M. Walser. W.S. Weiglhofer and A. Lakhtakia. ed. Introduction to Complex Mediums for Electromagnetics and Optics.SPIE Press, Bellingham,WA,USA (2003).
    [2] Smith, David R.. "What are Electromagnetic Metamaterials? Novel Electromagnetic Materials. The research group of D.R. Smith (2006-06-10).
    [3] W. E. Kock, "Metal-Lens Antennas", IRE Proc. 34: 828(1946).
    [4] W.E. Kock,"Metallic Delay Lenses", Bell. Sys. Tech. Jour. 27: 58-82(1948).
    [5] Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of [permittivity] and [permeability]".Soviet Physics Uspekhi 10 (4): 509–514(1968).
    [6] V.M. Shalaev, W. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction inoptical metamaterials, Opt. Lett. 30 , 3356(2006).
    [7] G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Simultaneous negative phase and group velocity of light in a metamaterial, Science 312, 892(2006).
    [8] G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Low-loss negative-index metamaterial at telecommunication wavelengths, Opt. Lett. 31, 1800(2006).
    [9] C. Enkrich, F. Perez-Williard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, S. Linden, Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials, Adv. Mater. 17 , 2547(2005).
    [10] S.R.J. Brueck, Optical and interferometric lithography—nanotechnology enablers, Proc. IEEE 93 ,1704(2005).
    [11] Z. Ku, S.R.J. Brueck, Comparison of negative refractive index materials with circular, elliptical and rectangular holes, Opt. Express 15 , 4515(2007).
    [12] Y. Chen, Y. Zhou, G. Pan, E. Huq, Nanofabrication of SiC templates for direct hot embossing for metallic photonic structures and metamaterials, in: Micro- and Nano Engineering Conference Proceedings, MNE07, p. 592(2007).
    [13] S.W. Pang, T. Tamamura, M. Nakao, A. Ozawa, H. Masuda, Direct nano-printing on Al substrate using a SiC mold, J. Vac. Sci. Technol. B 16 , 1145(1998).
    [14] J. Opt. A: Pure Appl. Opt. 8 S139 (2006)
    [15] 過冷溶液http://tw.knowledge.yahoo.com/question/?qid=1405121607426
    [16] R. Zallen, “The Physics of Amorpous Solids”, John Wiley and Sons, New York (1983)
    [17] M. Wuttig and N. Yamada, "Phase-change materials for rewriteable data storage", Nature Materials 6, 824 - 832 (2007).
    [18] T. Ohta, "Phase-Change Optical Memory Promotes the DVD Optical Disk", J. Opt. Adv. Mat. 3, 609 (2001).
    [19] 徐豪汶,“鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的研究究”,碩士論文, 中央物理研究所 (2006)
    [20] G. F. Zhou, H. J. Borg, J. C. N. Rijpers, and M. Lankhorst, "Crystallization behavior of phase change materials: comparison between nucleation- and growth-dominated crystallization", Optical Data Storage, Conference Digest, (2000).
    [21] Benno Tieke, Martijn Dekker, Nicola Pfeffer, Roel van Woudenberg, Guo-Fu Zhou, and Igolt P. D. Ubbens, “High data-rate phase-change media for the digital video recording system”, Jpn. J. Appl. Phys. 39, 762 (2000).
    [22] S. R. Ovshinsky, "Reversible electrical switching phenomena in disordered structures", Phys. Rev. Lett. 21, 1450 (1968).
    [23] J.Feinleib, J.deNeufville, S.C. Moss, and S.R.Ovshisky, "Rapid reversible light-induced crystallization of amorphous semiconductors", Appl. Phys. Lett. 18, 254 (1971).
    [24] J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J.Jacobs, "Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth", J. Appl. Phys. 78, 4096 (1995).
    [25] 嚴昱賢, “初鍍態鍺銻碲相變化薄膜上之記錄點形成研究”,碩士論文,台灣大學物理學研究所 (2007)。
    [26] 許智清, “近場高密度光碟片之奈米記錄點的動態光電檢測”,碩士論文,台灣海洋大學光電科學研究所 (2005)。
    [27] 高宗聖, “氧化鋅複合材料奈米薄膜之近場超解析結構”,碩士論文,台灣大學物理學研究所 (2007)。
    [28] N. Kh. Abrikosov and G. T. Danilova-Dobryakova, Izv. Akad. Nauk SSSR, Neorg. Mater. 1, 204 (1965)
    [29] R. Kojima, S. Okabayashi, T. Kashihara, K. Horai, and N. Yamada, Proc. Symp. on Phase-Change Recording ¬8, 35 (1996). (in Japanese)
    [30] Noboru Yamada et al., “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory”, J. Appl. Phys. 69, 2849 (1991)
    [31] Noboru Yamada, Toshiyuki Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory”, J. Appl. Phys. 88, 7020 (2000).
    [32] Noboru Yamada, Eiji Ohno, Kenichi Nishiuchi, Masatoshi Takao, and Nobuo Akahira, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory”, J. Appl. Phys. 69, 2849 (1991).
    [33] I. Friedrich et al., “Structure transforms of Ge2Sb2Te5 films studied by electrical resistance measurements”, J. Appl. Phys. 87, 4130 (2000).
    [34] 郭博成,“添加元素對Ge2Sb2Te5相變化光碟記錄之光學性質的影響”,台灣大學材料研究所 (2002).
    [35] Zhimei Sun, Jian Zhou, and Rajeev Ahuja, “Unique Melting Behavior in Phase-Change Materials for Rewritable Data Storage”, PRL 98, 055505 (2007).
    [36] V.Weidenhof et al., “Laser induced crystallization of amorphous Ge2Sb2Te5 Films”, J. Appl. Phys. 89, 3168 (2001).
    [37] V.Weidenhof et al., “Minimum time for Laser induced amorphization of Ge2Sb2Te5 Films”, J. Appl. Phys. 88, 657(2000)

    無法下載圖示 本全文未授權公開
    QR CODE