簡易檢索 / 詳目顯示

研究生: 李育賢
LEE, Yu-Hsien
論文名稱: 物理探究實作結合立即反饋之教學模組研發與實踐
The Development and Implementation of Physics Teaching Modules with Interactive Response System and Inquiry Activities
指導教授: 傅祖怡
Fu, Tsu-Yi
張俊彥
Chang, Chun-Yen
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 100
中文關鍵詞: 同儕教學法形成性評量科技輔助教學複合式教學法
英文關鍵詞: complex instruction, computer-assisted, formative evaluation, peer instruction
DOI URL: http://doi.org/10.6345/NTNU202000022
論文種類: 學術論文
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對離島地區高中課堂上不易學習的物理單元如:牛頓力學、靜力學、能量及電磁波的概念,部份單元配合簡單的教具如:氣動桌、紙板與彈簧、收音機及手機,輔以Clicker、CCR(CloudClassRoom,網址:ccr.tw)作為立即反饋工具,所設計的4組教學模組實際活動執行成果。課程中藉由傳統作答、動手操作、師生互動、同儕討論與合作學習等多樣化的教學方式,期能幫助學生以探究式方法學習物理,建構正確知識的可能性。本論文有質性及量化的研究分析,部分單元輔以理論支持,讓教師得以參考本論文各模組成效,以做為實際教學之參考。
    本論文研究證實以立即反饋系統融入課堂教學有助於學生的概念學習,教師若能把物理單元進行實驗融入與同儕探究,可以顯著提升學生的物理概念。再者,若將學生偏好的參與風格分為安靜和口頭參與(安靜VS.口頭),老師的教學方法分為傳統講述式教學與選擇題封閉式討論的立即反饋教學(講述VS.同儕)。研究結果得知安靜參與的同學適合傳統講述式教學方法,而使用同儕封閉式立即反饋則較適合口頭參與的同學。最後,若使用CCR作為開放式回答的立即反饋工具,對照封閉式立即反饋的實驗結果可以得知,高先備知識學生在開放式問題驅動教學有較好的概念學習成效,但也要注意低先備知識學生在此教學情境下是否會有不利的影響。

    This study focus on physical courses that are difficult to learn in high school classrooms, such as: Newtonian mechanics, statics, energy and electromagnetic waves. Some units are supported with simple teaching props such as: hockey tables, cardboard and springs, radios and mobile phones with Clicker or CCR (CloudClassRoom, http://ccr.tw) as an Interactive Response System (IRS), designed the actual activities of the four teaching modules. Through traditional instruction, hands-on, teacher-student interaction, peer discussion and cooperative learning, the curriculum can help students learn physics and construct correct knowledge in an exploratory way. This thesis has quantitative outcomes and qualitative analysis, some units are supplemented by theoretical support, so that teachers can refer to the achievements of each module from this paper, as a reference for practical teaching.
    This study has confirmed that using IRS for teaching and hands-on activities can help students with concept learning. If teachers can conduct physics experiments, they can also greatly improve students' physical concepts. In addition, if student performance style is divided into silent and verbal participation, two teaching methods (lecture and peer instruction) are designed for students. We found that silent participation is suitable for lecture methods, and peer instruction is suitable for verbal participation students. Finally, if CCR as a IRS, it can be known that students with higher-prior knowledge have better conceptual learning effects in open question-driven teaching.

    第一章:緒論 1 第二章、立即反饋對力學探究學習過程之影響 14 第三章、靜力學實驗操作對學習成效的影響 35 第四章、運用CCR解析物理概念探究過程 58 第五章、生活中電磁波教學成效評估 79 第六章、結論與展望 92

    1. Blank, M. (2015)。電磁波的真相 (OVERPOWERED: The Dangers of Electromagnetic Radiation (EMF) and What You Can Do About It;魏兆汝譯)。臺北市:臺灣商務。(原著出版於2014年)
    2. Kuhn, T. (1994)。科學革命的結構 (The structure of scientific revolutions;程樹德、傅大為、王道還、錢永祥譯)。臺北市:遠流。(原著出版於1970年)
    3. 王瑞琦(2010)。基地台設置的風險溝通與公民參與之困境。國立臺灣大學社會科學院政治學系碩士論文。
    4. 吳瑞卿(2010)。大一物理力學能力評量與其探討。大同大學通識教育年報,第六期
    5. 吳瑞卿(2017)。大一力學概念能力評估及試題分析。大同學報,30,81-88。
    6. 李育賢、王晢剛(2017)。手機的穿針引線。「2017全國科學探究競賽」競賽作品。
    7. 李育賢、李哲承(2016)。不需力桌的靜力學實驗。物理教育學刊,17(1),54-55。
    8. 李龍豪、簡佑達、張俊彥、李宗諺、曾元顯(2016)。短文回應的主題自動歸類在行動教育活動上之應用初探。圖書資訊學研究,11(1),47-84。
    9. 林淑梤、張惠博、段曉林、姜志忠、楊巽斐(2006)。一位高中物理教師對於探究取向科學演示的詮釋以及其實施的影響因素之研究。科學教育學刊,14(6),615-635。
    10. 林凱胤(2014)。即時回饋機制對學生學習專注力影響之研究。科學教育學刊,22(1),87-107。
    11. 姚珩(1994)。實驗教學法淺論。中等教育雙月刊,45(2)。
    12. 姚珩(1998)。物理學的基礎:力學。臺北市:臺灣書店。
    13. 姚珩、孫治平、李秉書(2016)。力學能守恆理論形成的歷史探究及其在科學史融入於教學上的意義。科學教育學刊 ,24(4),379-416。
    14. 張俊彥、簡佑達、李宗諺(2015)。CCR幫你把教室翻過來!。南一地球科學教學誌。
    15. 張慧貞(2003)。由哈佛到逢甲:普通物理互動教學的實施與成效。科學教育學刊,11(4),391-406。
    16. 教育部(2018)。十二年國民基本教育課程綱要: 國民中小學暨普通型高級中等學校自然科學領域。臺北市:教育部。
    17. 曹天元(2007)。量子物理史話:上帝擲骰子嗎?。臺北縣,八方出版。
    18. 陳文雄,陳世一(2016)。來自空中的殺手:別讓電磁波謀殺你的健康。新自然主義。
    19. 陳章正、江新合(2007)。建構高中物理解題教學模式之研究。臺中教育大學學報:數理科技類,21(1),17-42。
    20. 黃讚松(2014)。運用輔助教學提升師生互動與學習成效–以IRS為例。電腦科學與教育科技學刊,4(1),24-38。
    21. 蘇懿生、黃台珠(1999)。實驗室氣氛與學生對科學的態度之關係研究。科學教育學刊,7(4),93-410。
    22. 龔心怡(2016)。運用紙本IRS即時反饋系統翻轉高等教育統計課程-Plickers教學之反思。高等教育研究紀要,5,35-48。
    23. Ahn, W., Chu, H. E., & Martin, S., Chien, Y. T., Chun, H. J., & Chang, C. Y. (May, 2016). Development of an instrument to examine Engagement and Participation in Classroom – Science. Paper presented at the 2016 International Conference of the East-Asian Association for Science Education (EASE), Tokyo, Japan.
    24. Beatty, I. (2004). Transforming student learning with classroom communication systems. EDUCAUSE Center Appl. Res. (ECAR) Res. Bull, (3), 1-13.
    25. Beatty, I. D., & Gerace, W. J. (2009). Technology-enhanced formative assessment: A research-based pedagogy for teaching science with classroom response technology. Journal of Science Education and Technology, 18(2), 146-162.
    26. Beatty, I. D., Gerace, W. J., Leonard, W. J., & Dufresne, R. J. (2006). Designing effective questions for classroom response system teaching. American Journal of Physics, 74(1), 31-39.
    27. Beichner, R. J., & Saul, J. M. (2003). Introduction of the SCALE-UP (Student-Centered Activities for Large Enrollment Undergraduate Program) project. Proceedings of the International School of Physics, Varenna, Italy, July, 2003.
    28. Berkowitz, R., Moore, H., Astor, R. A., & Benbenishty, R. (2016). A research synthesis of the associations between socioeconomic background, inequality, school climate, and academic achievement. Review of Educational Research, 87(2), 425-469.
    29. Bernhard, J. (2018). What matters for students’ learning in the laboratory? Do not neglect the role of experimental equipment!. Instructional Science, 46, 819-846.
    30. Blasco-Arcas, L., Buil, I., Hernández-Ortega, B., & Sese, F. J. (2013). Using clickers in class. The role of interactivity, active collaborative learning and engagement in learning performance. Computers & Education, 62, 102-110.
    31. Boscardin, C., & Penuel, W. (2012). Exploring benefits of audience-response systems on learning: a review of the literature. Academic Psychiatry, 36(5), 401-407.
    32. Buil, I., Catalán, S., & Martínez, E. (2016). Do clickers enhance learning? A control-value theory approach. Computers & Education, 103, 170-182.
    33. Buil, I., Catalán, S., & Martínez, E. (2017). The influence of flow on learning outcomes: An empirical study on the use of clickers. British Journal of Educational Technology, 50(1), 428-439.
    34. Burnstein, R. A., & Lederman, L. M. (2001). Using wireless keypads in lecture classes. The Physics Teache, 39, 8-11.
    35. Caldwell, J. E.(2007) Clickers in the Large Classroom: Current Research and Best-Practice Tips. CBE-Life Sciences Education, 6, 9-20.
    36. Chen, J. C., Whittinghill, D. C., & Kadlowec, J. A. (2010). Classes That Click: Fast, Rich Feedback to Enhance Student Learning and Satisfaction. Journal of Engineering Education, 99(2), 159–168.
    37. Chien, Y. T., Chang, Y. H., & Chang, C. Y.(2016). Do we click in the right way? A meta-analytic review of clicker-integrated instruction. Educational Research Review, 17, 1-18.
    38. Chien, Y. T., Jen, C. H., Martin, S., Chu, H. E., & Chang, C. Y. (2017). Factors contributing to engagement in science learning: A survey study. Paper submitted the International Conference of the European Science Education Research Association (ESERA), Dublin, Ireland.
    39. Chien, Y. T., Jen, C. H., Martin, S., Chu, H. E., Ahn, W., & Chang, C. Y. (2016). Toward an understanding of students’ verbal and non-verbal participatory practices in the science classroom. Paper presented at the 2016 International Conference of the East-Asian Association for Science Education (EASE), Tokyo, Japan.
    40. Chien, Y. T., Lee, Y. H., Jen, C. H., Martin, S. N., & Chang, C. Y. (2017). Investigating interaction effects between clicker usage and student participation preferences on physics learning outcomes. Paper presented at the Korean Association for Science Education (KASE), Seoul, Korea.
    41. Chien, Y. T., Lee, Y. H., Li, T. Y., & Chang, C. Y.(2015). Examining the effects of displaying clicker voting results on high school students’ voting behaviors, discussion processes, and learning outcomes. Eurasia Journal of Mathematics, Science & Technology Education, 11(5), 1089-1104.
    42. Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance and conformity. Annual Review of Psychology, 55, 591-621.
    43. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Earlbam Associates.
    44. Crouch, C. H., & Mazur, E. (2001). Peer instruction: Ten years of experience and results. American Journal of Physics, 69(9), 970-977.
    45. Dancy, M., Henderson, C., & Turpen, C. (2016). How faculty learn about and implement research-based instructional strategies: The case of Peer Instruction. Physical Review Physics Education Research, Phys. 12(1), 010110.
    46. Davids, M., Forrest, R., & Pata, D. (2010). Teaching the Fundamentals of Cell Phones and Wireless Communications. The Physics Teacher, 48, 217.
    47. Deslauriers, L., Schelew, E., & Wieman, C. (2011). Improved learning in a large-enrollment physics class. Science, 332(6031), 862-864.
    48. Duncan, D. (2005). Clickers in the classroom: How to enhance science teaching using classroom response systems. San Francisco, CA: Pearson.
    49. Fagen, A. P., Crouch, C. H., & Mazur, E. (2002). Peer instruction: Results from a range of classrooms. The Physics Teacher, 40(4), 206-209.
    50. Fies, C., & Marshall, J.(2006). Classroom response systems: a review of the literature. Journal of Science Education and Technology, 15(1), 101-109.
    51. Freeman, M., Blayney, P., & Ginns, P. (2006). Anonymity and in class learning: The case for electronic response systems. Australasian Journal of Educational Technology, 22(4), 568-580.
    52. Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415.
    53. Gilbert, A.(2005). New for back-to-school: ‘Clickers’. Retrieved May 1, 2015, from http://www.cnet.com/news/new-for-back-to-school-clickers/
    54. Goffman, E. (1959). The presentation of self in everyday life. New York, NY: Doubleday.
    55. Goldsmith, R. E., Clark, R. A., & Lafferty, B. A. (2005). Tendency to conform: A new measure and its relationship to psychological reactance. Psychological Reports, 96(3), 591-594.
    56. Han, J., & Finkelstein, A. ( 2013). Understanding the effects of professors' pedagogical development with clicker assessment and feedback technologies and the impact on students' engagement and learning in higher education. Computers & Education, 65, 64-76.
    57. Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force Concept Inventory. The Physics Teacher, Vol. 30, 141-158.
    58. Hodges, L. C., Anderson, E. C., Carpenter, T. S., Cui, L., Feeser, E. A., & Gierasch, T. M.(2017). Using Clickers for Deliberate Practice in Five Large Science Courses. Journal of College Science Teaching, 47(2), 22-29.
    59. Hoekstra, A. (2008). Vibrant student voices: Exploring effects of the use of clickers in large college courses. Learning, Media and Technology, 33(4), 329-341.
    60. Holden, R. R., Wood, L. L., & Tomashewski, L. (2001). Do response time limitations counteract the effect of faking on personality inventory validity? Journal of Personality and Social Psychology, 81(1), 160-169.
    61. Hunsu, N. J., Adesope, O., & Bayley, D. J. (2016). A meta-analysis of the effects of audience response systems (clicker-based technologies) on cognition and affect. Computers & Education, 94, 102-119.
    62. Jones, E. E., & Pittman, T. S. (1982). Toward a general theory of strategic self-presentation. In J. Suls (Ed.), Psychological perspectives on the self (Vol. 1, pp. 231-262). Hillsdale, NJ: Erlbaum.
    63. Kaiser, H. F. (1974). An index of factorical simplicity. Psychometrica, 39,31-36.
    64. Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539.
    65. Kalyuga, S., Chandler, P., & Sweller, J. (2001). Learner experience and efficiency of instructional guidance. Educational Psychology, 21, 5–23.
    66. Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93, 579–588.
    67. Kay, R. H., & LeSage, A. (2009). Examining the benefits and challenges of using audience response systems: A review of the literature. Computers & Education, 53(3), 819-827.
    68. Kim, E. J., Berger, C., Kim, J., & Kim, M. S. (2014). Which self-presentation style is more effective? A comparison of instructors' self-enhancing and self-effacing styles across the culture. Teaching in Higher Education, 19(5), 510-524.
    69. Knight, J. K., Wise, S. B., & Southard, K. M. (2013). Understanding clicker discussions: Student reasoning and the impact of instructional cues. CBE Life Sciences Education, 12(4), 645-654.
    70. Leary, M. R., & Kowalski, R. M. (1990). Impression management: A literature review and two-component model. Psychol Bull, 107(1), 34-37.
    71. Ludvigsen, K., Krumsvik, R., & Furnes, B.(2015). Creating formative feedback spaces in large lectures. Computers & Education, 88, 48-63.
    72. MacArthur, J. R., & Jones, L. L. (2008). A review of literature reports of clickers applicable to college chemistry classrooms. Chemistry Education Research and Practice, 9(3), 187-195.
    73. Maries, A. Singh, C. (2016). Teaching assistants’ performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory. Physical Review Physics Education Research, 12, 010131.
    74. Mazur, E. (1997). Peer instruction: A user's manual. Upper Saddle River, NJ: Prentice Hall.
    75. Mazur, E. (2009). American Association for the Advancement of Science. Science, 323(5910), 50-51.
    76. Mazur, E., & Hilborn, R. C. (1997). Peer instruction: A user's manual. Physics Today, 50(4), 68.
    77. Meehan, K. C., & Salmun, H. (2016). Integrating technology in today’s undergraduate classrooms: A look at students’ perspectives. Journal of College Science Teaching, 46(1), 39-47.
    78. Meltzer, D. & Manivannan, K. (2002). Transforming the lecture-hall environment: The fully interactive physics lecture. American Journal of Physics. 70(6). 16.
    79. Meltzer, D., & Thornton, R. K. (2012). Resource letter ALIP-1: Active-learning instruction in physics. American Journal of Physics, 80(6), 479-496.
    80. Ministry of science and Technology (2013). Why students keep silence? An investigation into teacher-student interaction from a cultural perspective. Taipei, Taiwan: Ministry of science and Technology.
    81. Nicol, D. J., & Boyle, J. T. (2003). Peer Instruction versus Class-wide Discussion in Large Classes: a comparison of two interaction methods in the wired classroom. Studies in Higher Education, 28, 4.
    82. Novak, J. D. (1998). Learning, Creating, and Using Knowledge. Mahwah: Lawrence Erlbaum.
    83. Novak, J. D., & Gowin, D. B (1984). Learning How to Learn. New York: Cambridge University Press.
    84. Pollock, S. J. (2006). Transferring transformations: learning gains, student attitudes, and the impacts of multiple instructors in large lecture courses. AIP Conf. Proc. 818(1), 141–144.
    85. Pontari, B. A., & Schlenker, B. R. (2000). The influence of cognitive load on self-presentation: can cognitive busyness help as well as harm social performance? J Pers Soc Psychol, 78(6), 1092-1108.
    86. Remner, J., Abraham, M., & Birnie, H. (1985). The Importance of the Form of Student Acquisition of Data in Physics Learning Cycles. Journals of Research in Science Teaching, 22, 303-325.
    87. Rojo, M. Muñoz, J,. (2014).“Hearing“ Electromagnetic Waves. The Physics Teacher. 52, 554.
    88. Roorda, D. L., Jak, S., Zee, M., Oort, F. J., & Koomen, H. M. Y. (2017). Affective teacher–student relationships and students' engagement and achievement: A meta-analytic update and test of the mediating role of engagement. School Psychology Review, 46(3), 239-261.
    89. Schlenker, B. R. (2012). Self-presentation. In M. R. Leary & J. P. Tangney (Eds.), Handbook of self and identity (2th ed., pp. 542-570). New York, NY: Guilford Press.
    90. Shapiro, A. M., Sims-Knight, J., O'Rielly, G. V., Capaldo, P., Pedlow, T., Gordon, L., & Monteiro, K. (2017). Clickers can promote fact retention but impede conceptual understanding: The effect of the interaction between clicker use and pedagogy on learning. Computers & Education, 111, 44-59.
    91. Shim, S. S., & Finch, W. H. (2014). Academic and social achievement goals and early adolescents' adjustment: A latent class approach. Learning and Individual Differences, 30, 98-105.
    92. Smith, M. K., Wood, W. B., Adams, W. K., Wieman, C., Knight, J. K., Guild, N., & Su, T. T. (2009). Why peer discussion improves student performance on in-class concept questions. Science, 323(5910), 122-124.
    93. Smith, M. k., Wood, W. B., Krauter, K., & Knight, J. K., (2011). Combining Peer Discussion with Instructor Explanation Increases Student Learning from In-Class Concept. CBE-Life Sciences Education, 10, 55-63.
    94. Stowell, J. R., & Nelson, J. M. (2007). Benefits of electronic audience response systems on student participation, learning, and emotion. Teaching of Psychology, 34(4), 253-258.
    95. Thacker, B., Kim, E., Trefz, K., & Lea, S. M. (1994). Comparing problem solving perfor-mance of physics students in inquiry-based and traditional introductory physics courses. Amer-ican Journal of Physics, 62, 627-633.
    96. Thapa, A., Cohen, J., Guffey, S., & Higgins-D’Alessandro, A. (2013). A review of school climate research. Review of Educational Research, 83(3), 357-385.
    97. Tice, D. M., Butler, J. L., Muraven, M. B., & Stillwell, A. M. (1995). When modesty prevails: Differential favorability of self-presentation to friends and strangers. Journal of Personality and Social Psychology, 69(6), 1120-1138.
    98. Turpen, C., & Finkelstein, N. D. (2010). The construction of different classroom norms during peer instruction: Students perceive differences. Physical Review Special Topics - Physics Education Research, 6(2), 020123.
    99. Tyler, J. M., & Adams, K. E. (2017). Self-presentation and social influence: Evidence for an automatic process. In S. G. Harkins, K. D. Williams, & J. Burger (Eds.), The Oxford handbook of social influence (pp. 219-235). New York, NY: Oxford University Press.
    100. Vanderhoven, E., Raes, A., Montrieux, H., Rotsaert, T., & Schellens, T. (2015). What if pupils can assess their peers anonymously? A quasi-experimental study. Computers & Education, 81, 123-132.
    101. Vickrey, T., Rosploch, K., Rahmanian, R., Pilarz, M., & Stains, M. (2015). Research-based implementation of peer instruction: a literature review. CBE-Life Sci Educ, 14, 1-11.
    102. Vohs, K. D., Baumeister, R. F., & Ciarocco, N. J. (2005). Self-regulation and self-presentation: regulatory resource depletion impairs impression management and effortful self-presentation depletes regulatory resources. Journal of Personality and Social Psychology, 88(4), 632-657.
    103. Wang, Y. H. (2017). The effectiveness of integrating teaching strategies into IRS activities to facilitate learning. Journal of Computer Assisted Learning, 33, 35-50.
    104. Wentzel, K. R., Battle, A., Russell, S. L., & Looney, L. B. (2010). Social supports from teachers and peers as predictors of academic and social motivation. Contemporary Educational Psychology, 35(3), 193-202.
    105. Wieman, C., & Perkins, K. (2005). Transforming physics education. Physics today, 58(11), 36-41.
    106. Wieman, C., Perkins, K., Gilbert, S., Benay, F., Kennedy, S., Semsar, K., . . . Simon, B. (2017). Clicker resource guide: An instructors guide to the effective use of personal response systems (clickers) in teaching Retrieved from http://www.cwsei.ubc.ca/resources/files/Clicker_guide_CWSEI_CU-SEI.pdf
    107. Wilson, J. M. (1994). “The CUPLE Physics Studio”. The Physics Teacher, 32, 518.
    108. Wood, B. K. & Blevins B. K. (2019). Substituting the practical teaching of physics with simulations for the assessment of practical skills: an experimental study. Physics Education, 54, 035004.
    109. Yourstone, S. A., Kraye, H. S., & Albaum, G. (2008). Classroom Questioning with Immediate Electronic Response: Do Clickers Improve Learning?. Decision Sciences Journal of Innovative Education, 6(1), 75-88.
    110. Zhang, P., Ding, L., & Mazur, E. (2017). Peer instruction in introductory physics: A method to bring about positive changes in students' attitudes and beliefs. Physical Review Physics Education Research, 13(1), 010104.

    無法下載圖示 電子全文延後公開
    2025/12/31
    QR CODE