研究生: |
黃宣霖 Shiuan-Lin Huang |
---|---|
論文名稱: |
步行時下肢肌群推進與支撐之貢獻 Lower extremity muscle contributions to support and propulsion during walking |
指導教授: |
張家豪
Chang, Jia-Hao |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 步態分析 、骨骼肌肉 、電腦模擬 、肌肉活化 |
英文關鍵詞: | gait analysis, musculoskeletal, computer simulation, muscle activation |
論文種類: | 學術論文 |
相關次數: | 點閱:249 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:探討人體下肢各別肌群在步行動作中,如何支撐與加速人體質心。方法:招募一位健康男性施作五次正常步行動作,擷取其動作之運動學、動力學參數與下肢肌群電位訊號,匯入OpenSim模擬軟體建立具有12個肢段、23個關節自由度與92條作用肌的骨骼肌肉模型,利用微擾分析工具,求得各別肌群在單腳支撐期對支撐與加速人體質心之貢獻。結果:單腳支撐期初期,下肢肌群支撐並使人體質心減速,此階段貢獻最大者是股四頭肌與臀大肌;單腳支撐期後期,下肢肌群支撐並推動人體質心向前加速,比目魚肌與腓腸肌貢獻最大。結論:步行動作中,對人體產生支撐、減速與加速作用的下肢肌群,貢獻最大者是:股四頭肌、臀大肌、比目魚肌與腓腸肌。
Purpose: To determine how lower extremity muscles contribute to support and accelerate human body during walking. Method: A musculoskeletal model (12 segments, 23 degree of freedom, 92 actuators) was modified for a healthy adult male by using OpenSim software. The time history of muscle activation during walking was deducted and used for perturbation analysis. Muscle force generated by each actuator was perturbed to see how single muscle contributes to the acceleration of human body's center of mass. Results: During the early part of single support phase, lower extremity muscles support and decelerate human body, quadriceps femoris and gluteus maximus are the major contributors. During the latter part of single support phase, soleus and gastrocnemius muscles are the major contributors for supporting and accelerating human body. Conclusion: Among the vast variety of lower extremity muscle groups, quadriceps femoris, gluteus maximus, soleus and gastrocnemius muscles are the four major contributors to acceleration of human body’s center of mass.
Anderson, F. C., & Pandy, M. G. (1999). A dynamic optimization solution for vertical jumping in three dimensions. Computuer Methods in Biomechanics & Biomedicine Engineering, 2, 201–231.
Cappellini, G., Ivanenko, Y. P., Poppele, R. E., & Lacquaniti, F. (2006) Motor patterns in human walking and running. Journal of Neurophysiology, 95, 3426–3437.
Damiano, D. L., Arnold, A. S., Steele, K. M., & Delp, S. L. (2010). Can Strength Training Predictably Improve Gait Kinematics? A Pilot Study on the Effects of Hip and Knee Extensor Strengthening on Lower-Extremity Alignment in Cerebral Palsy. Physical Therapy, 90(2), 269-279.
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., & Thelen, D. G. (2007). OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940-1950.
Delp, S. L., Loan, P. J., Hoy, M. G., Zajac, F. E., Topp, E. L., & Rosen, J. M. (1990). An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures. IEEE Transactions on Biomedical Engineering, 37(8), 757-767.
Dennerlein, J. T. (2005) Finger flexor tendon forces are a complex function of finger joint motions and fingertip forces. Journal of Hand Therapy, 18, 120–127.
Ebashi S., & Endo M. (1968). Calcium ion and muscle contraction. Progress in Biophysics and Molecular Biology, 18, 125–83.
Erdemir, A., McLean, S., Herzog, W., & van den Bogert, A. J. (2007) Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22, 131–154.
Finni, T., Komi, P. V., & Lukkariniemi, J. (1998). Achilles tendon loading during walking: application of a novel optic fiber technique. European Journal of Applied Physiology and Occupational Physiology, 77, 289–291.
Hamner, S. R., Seth, A., & Delp, S. L. (2010).Muscle contributions to propulsion and support during running. Journal of Biomechanics, 43, 2709-2716.
Hara, M., Shibayama, A., Takeshita, D., Fukashiro, S. (2006). The effect of arm swing on lower extremities in vertical jumping. Journal of Biomechanics, 39 (13), 2503–2511.
Hinrichs, R., Cavanagh, P. R., & Williams, K. R. (1987) Upper extremity function in running, I: center of mass and propulsion considerations. International Journal of Sports Biomechanics, 3, 222–241.
Liu, M. Q., Andersona, F. C., Pandy, M. G., & Delp, S. L. (2006). Muscles that support the body also modulate forward progression during walking. Journal of Biomechanics, 39, 2623-2630.
Pandy, M. G., Garner, B. A. & Anderson, F. C. (1995). Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. Journal of Biomechanics, 117, 15–26.
Pandy, M. G. (2001). Computer Modeling and Simulation of Human Movement. Annual Review of Biomedical Engineering, 3, 245–73.
Neptune, R. R., Zajac, F. E., Kautz, S. A., 2004. Muscle force redistributes segmental power for body progression during walking. Gait and Posture, 19, 194–205.
Raasch, C. C., Zajac, F. E., Ma, B. & Levine, W. S. (1997). Muscle coordination of maximum-speed pedaling. Journal of Biomechanics, 30, 595–602.
Sasaki, K., & Neptune, R. R. (2005). Differences in muscle function during walking and running at the same speed. Journal of Biomechanics, 39, 2005–2013.
Thelen, D. G., Anderson, F. C. & Delp, S. L. (2003). Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics, 36, 321–328.
van Mameran, H. & Drukker, J. (1979) Attachment and composition of skeletal muscles in relation to their function. Journal of Biomechanics, 12, 859-867.
Whittlesey, S. N. & Hamill, J. (2004) Computer simulation of human movement, In D. G. E., Robertson, G. E., Caldwell, J., Hamill, G., Kamen & S. N., Whittlesey (Eds.). Research methods in biomechanics(211-225), Champaign, IL: Human Kinetics.
Wright, I. C., Neptune, R. R., van den Bogert, A. J. & Nigg, B. M. (1998) Passive regulation of impact forces in heel-toe running. Clinical Biomechanics, 13, 521-531.
Zajac, F. E., & Gordon, M. E. (1989) Determining muscle’s force and action in multi-articular movement. Exercise & Sport Sciences Review, 17, 187–230.