簡易檢索 / 詳目顯示

研究生: 梁翰勛
Liang Han Shun
論文名稱: 一維介電質-金屬光子晶體方向感測濾波性質之研究
Studies of sensing and filtering properties in one-dimensional dielectric-metal photonic crystals
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 49
中文關鍵詞: 光子晶體單向不可逆抗反射膜
英文關鍵詞: Photonic crystals, One-way transmission, Antireflection film
論文種類: 學術論文
相關次數: 點閱:81下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體(PCs)是由不同折射率的介質,按照週期性排列而成的結構且具有空間週期性特性的光學介質,它的固有特性是存在著一些光子能隙(PBGs) 或稱「光子頻率禁帶」,當頻率落在禁帶中的光或電磁波是無法在光子晶體結構中傳播的。本論文目的是在設計含有缺陷模態之介電質-金屬光子晶體濾波器並研究及分析其特性。在此篇論文中,共研究了兩個主題,藉由轉移矩陣法(TMM)模擬計算吸收率及透射率對應波長之關係圖。
    第一個主題是研究一維介電質-金屬光子晶體,在缺陷模態中對於電磁波的影響。利用介電質-金屬材料的堆疊,中間夾帶缺陷層的三明治結構所產生單向不可逆的特性,我們研究堆疊週期數的改變及入射方向改變時對波長吸收所造成的影響。另外,我們也分析了在TE和TM不同模態下改變入射角度時的現象。
    第二個主題是利用介電質-金屬材料的堆疊來提升入射波的透射。我們通過在結構的頂端和底部添加抗反射層的處理,使得透射率更為提升。另外,我們也分析了在TE和TM不同模態下改變入射角度時的現象。

    Photonic crystals (PCs), artificially periodic structures, are known to have the photonic bandgaps (PBGs), in which electromagnetic waves cannot propagate through the PCs. In this thesis, we use the transfer matrix method (TMM) to study the wave properties for the metal-dielectric PCs.
    The first topic is to study the one-way (unidirectional) transmission properties in a one-dimensional dielectric-metal PC containing a defect layer. By calculating the absorptance we find the considered structure can exhibit the unidirectional transmission. This unidirectional property is further investigated by changing the angle of incidence for TE and TM modes.
    The second theme is to study how to enhance the transmission in a dielectric-metal PC. It is found that by adding the antiflection layer at the bottom or top of the PC, significant enhancement in the transmission can be obtained in our structure. In addition, the phenomenon of enhancement is also studied as a function of the angle of incidence for both TE and TM modes.

    摘要.......................................................I Abstract..................................................II 誌謝.....................................................III目錄......................................................IV 第一章...................................................簡介 1-1 光子晶體.............................................1 參考文獻....................................................5 第二章 有缺陷的一維單向介電質-金屬光子晶體特性之研究 2-1 簡介................................................9 2-2 基本方程式與結構.....................................10 2-3 數值結果分析與討論...................................13 2-3-1改變週期數產生之影響...................................14 2-3-2改變入射波及入射角度產生之影響...........................17 2-4 加入另一介電質層產生之影響............................19 2-5 基本方程式與結構.....................................19 2-6 數值結果分析與討論...................................20 2-6-1改變週期數產生之影響...................................21 2-6-2改變入射波及入射角度產生之影響...........................24 2-7 結論...............................................26 參考文獻...................................................27 第三章 一維金屬-介電質光子晶體抗反射膜特性之研究 3-1 簡介...............................................30 3-2 基本方程式與結構.....................................32 3-3 數值結果分析與討論...................................36 3-3-1一維金屬-介電質光子晶體堆疊之影響........................37 3-4 加入抗反射膜產生之影響................................38 3-5 基本方程式與結構.....................................38 3-6 數值結果分析與討論...................................39 3-6-1抗反射膜對透射頻譜產生之影響............................40 3-6-2改變入射波及入射角度產生之影響...........................42 3-7 結論...............................................44 參考文獻...................................................45 第四章 結論.............................................48

    第一章 簡介
    [1]S. John, “Strong localization of photons in certain disordered lattices,” Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
    [2]E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
    [3]J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science, Vol. 282, 1476-1478, 1998.
    [4] M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol. 77, 3902-3904, 2000.
    [5]Y. Zhang and B. Y. Gu, “Aperiodic photonic quantum-well structures for multiplechanneled filtering at arbitrary preassigned frequencies,” Opt. Express, Vol. 2, 5910–5915, 2004.
    [6]G. Guida, A. de Lustrac, and A. Priou, “An introduction to photonic band gap (PBG) materials,” Progress In Electromanetics Research, Vol. 41, 1-20, 2003.
    [7]L.-M. Qi, and Z. Yang, “Modified plane wave method analysis of dielectric plasma photonic crystal,” Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
    [8]Y. Shi, “A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section,” Progress In Electromagnetics Research, Vol. 103,393-401, 2010.
    [9]C.-J. Wu, J.-J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” ournal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.
    [10]D. Chen, M.-L. Vincent Tse, and H.-Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of rrays of subwavelength circular air holes: Birefringence and dispersion,” Progress In Electromagnetics Research, Vol. 105,193-212, 2010.
    [11]Y.-H. Ye, J. Ding, D.-Y. Jeong, I. C. Khoo, and Q. M. Zhang, “Finite-size effect on one-dimensional coupled-resonator optical waveguides,” Phys. Rev. E, Vol. 69, 056604, 2004.
    [12]X. Z. Sun, , P. F. Gu, W. D. Shen, X. Liu, Y. Wang, and Y. G. Zhang, “Design and fabrication of a novel reflection filter,” Applied Optics, Vol. 46, 2899-2902,2007.
    [13]Y., J. Fink, N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, “A dielectric omnidirectional reflector,” Science, Vol. 282, 1679-1682, 1998.
    [14]R. L. Nelson, and J. W. Haus, “One-dimensional photonic crystalsin reflection geometry for optical applications,” Appl. Phys. Lett., Vol. 83, 1089-1091, 2003.
    [15]A. Bruyant, G. Lérondel, P. J. Reece, and M. Gal, “All-silicon omnidirectional mirrors based on one-dimensional photonic crystals,” Appl. Phys. Lett., Vol. 82,3227, 2003.
    [16]E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou and A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature, Vol. 407, 983-986, 2000.
    [17]S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature, Vol. 394, 251-253, 1998.
    [18]bojiyida .“自然界中的光子晶体”.2007 http://bojiyida.blog.163.com/blog/static/26137642007514103618542/
    [19]L. P. Biró, K. Kertész, Z. Vértesy, G. I. Márk, Zs. Bálint, V. Lousse and J.-P. Vigneron, “Living photonic crystals: Butterfly scales - Nanostructure and optical properties,” Mater. Sci. Eng. C, Vol. 27, 941-946, 2007.
    [20]F. Mika , J. Matějková-Plšková , S. Jiwajinda, P. Dechkrong and M. Shiojiri,“Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence”, Materials, Vol. 5, 754-771, 2012.
    第二章 有缺陷的一維單向介電質-金屬光子晶體特性之研究
    [1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)
    [2] S. John, Phys. Rev. Lett. 58, 2486 (1987)
    [3] K. Inoue, K. Ohtaka, Photonic crystals: physics, fabrication and application (Springer-Verlag Berlin Heidelberg, New York, 2004)
    [4]C.P. Yin, T.B. Wang, J.W. Dong, Y.H. Chen, H.Z. Wang, Eur. Phys. J. B 69, 357 (2009)
    [5]R. Srivastava, K.B. Thapa, S. Pati, S.P. Ojha, Prog. Electromagn. Res. B 7, 133 (2008)
    [6]A.M. Steinberg, R.Y. Chiao, Phys. Rev. A 51, 3525 (1995)
    [7]T. Hattori, N. Tsurumachi, H. Nakatsuka, J. Opt. Soc. Am. B 14, 348 (1997)
    [8]H.T. Hsu, C.J. Wu, Prog. Electromagn. Res. Lett. 9, 101 (2009)
    [9]M.D. Tocci, M.J. Bloemer, M. Scalora, J.P. Dowling, C.M. Bowden, Appl. Phys. Lett. 66, 2324 (1995)
    [10]A. Banerjee, Prog. Electromagn. Res. Lett. 11, 129 (2009)
    [11]S.Y. Lin, J.G. Fleming, Z.Y. Li, I. El-Kady, R. Biswas, K.M. Ho, J. Opt. Soc. Am. B 20, 1538 (2003)
    [12]A.K. Sharma, S.H. Zaidi, P.C. Logofatu, S.R.J. Brueck, IEEE J. Quantum Electron. 38, 1651 (2002)
    [13]H. Huang, Y. Huang, X. Wang, Q. Wang, X. Ren, IEEE Photon. Technol. Lett. 16, 245 (2004)
    [14]M. Scalora, M.J. Bloemer, A.S. Pethel, J.P. Dowling, C.M. Bowden, J. Appl. Phys. 83, 2377 (1998)
    [15]M.J. Bloemer, M. Scalora, Appl. Phys. Lett. 72, 1676 (1998)
    [16]A.J. Ward, J.B. Pendry, W.J. Stewart, J. Phys.: Condens. Matter 7, 2217 (1995)
    [17]J. Yu, Y. Shen, X. Liu, R. Fu, J. Zi, Z. Zhu, J. Phys.: Condens. Matter 16, L51 (2004)
    [18]R.C. McPhedran, N.A. Nicorovici, L.C. Botten, C.M. de Sterke, P.A. Robinson, A.A. Asatryan, Opt. Commun. 168, 74 (1999)
    [19]Z. Wang, C.T. Chan, W. Zhang, N. Ming, P. Sheng, Phys. Rev. B 64, 113108 (2001)
    [20]M.M. Sigalas, C.T. Chan, K.M. Ho, C.M. Soukoulis, Phys. Rev. B 52, 11744 (1995)
    [21]Y.K. Choi, Y.K. Ha, J.E. Kim, H.Y. Park, K. Kim, Opt. Commun. 230, 239 (2004)
    [22]A. Zamudio-Lara, J.J. Sanchez-Mondragon, M. Torres- Cisneros, J.J.
    第三章 一維金屬-介電質光子晶體抗反射膜特性之研究
    [1]E. Yablonovitch, Phys. Rev. Lett. 58 (1987) 2059.
    [2]D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystal: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.
    [3]Z.Y. Li, Y. Xia, Phys. Rev. B 64 (2001) 153108.
    [4]C.J.M. Smith, R.M. De La Rue, M. Rattier, S. Olivier, H.Bensity, C. Weisbuch, T.F. Krauss, R. Houdr_e, U. Oesterke, Appl. Phys. Lett. 78 (2001) 1487.
    [5]A.R. McGurn, A.A. Maradudin, Phys. Rev. B 48 (1993) 17576.
    [6]J. Arriaga, A.J. Ward, J.B. Pendry, Phys.Rev. B 59 (1999) 1874.
    [7]A.P. Hibbins, J.R. Sambles, C.R. Lawrence, D.M. Robinson, Appl. Phys. Lett. 79 (2001) 2844.
    [8]D.F. Sievenpiper, M.E. Sickmiller, E. Yablonovitch, Phys. Rev. Lett. 76 (1996) 2480.
    [9]F. Gadot, A. de Lustrac, J.-M. Lourtioz, T. Brillat, A. Ammouche, E. Akmansoy, J. Appl. Phys. 85 (1999) 8499.
    [10]E.R. Brown, O.B. McMahon, Appl. Phys. Lett. 67 (1995) 2138.
    [11]M.M. Sigalas, R. Biswas, K.M. Ho, C.M. Soukoulis, D.D.Crouch, Phys. Rev. B 60 (1999) 4426.
    [12]M. Scalora, M.J. Bloemer, A.S. Pethel, J.P. Dowling, C.M.Bowden, A.S. Manka, J. Appl. Phys. 83 (1998) 2377.
    [13]S. Baglio, M.J. Bloemer, N. Savalli, M. Scalora, IEEE Sensors J. 1 (2001) 288.
    [14]M. Scalora, M.J. Bloemer, C.M. Bowden, Opt. Photon. News (September) (1999) 25.
    [15]M.J. Bloemer, M. Scalora, Appl. Phys. Lett. 72 (1998) 1676.
    [16]Y. Zheng, K. Kikuchi, M. Yamasaki, K. Sonoi, K.Uehara, Appl. Opt. 36 (1997) 6335.
    [17]H.A. Macleod, Thin-film Optical Filters, Institute of Physics Publishing, 2001.
    [18]K. Kim, H. Lim, D.-H. Lee, J. Korean Phys. Soc. 39 (2001) L956.
    [19]K. Kim, Phys. Rev. B 58 (1998) 6153.
    [20]E.D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York, 1998.
    [21]Young-Kyoung Choi , Young-Ki Ha , Jae-Eun Kim , Hae Yong Park , Kihong Kim.2004. Antireflection film in one-dimensional metallo-dielectric photonic crystals. Optics Communications 230 (2004) 239–243
    [22]S. Strite, H. Morkoc, J. Vac. Sci. Technol. B 10 (1992) 1237.
    [23]N.W. Ashcroft, N.D. Mermin, Solid State Physics, Saunders, London, 1976.
    [24]Y.K. Choi, Y.K. Ha, J.E. Kim, H.Y. Park, K. Kim, Physica B 338 (2003) 132.
    [25]Y.K. Choi, Study on the Transmission of metallo-dielectric Photonic Crystals, Doctoral Thesis in KAIST (2003) (in Korean).

    下載圖示
    QR CODE