簡易檢索 / 詳目顯示

研究生: 林毓珊
Lin, Yu-Shan
論文名稱: 剛性配位基插入銠金屬有機多面體建構金屬有機骨架
Metal-Organic Frameworks Construction with Rhodium Based Metal-Organic Cuboctahedra via Rigid Linker Insertion
指導教授: 林嘉和
Lin, Chia-Her
古川修平
Furukawa, Shuhei
口試委員: 林嘉和
Lin, Chia-Her
古川修平
Furukawa, Shuhei
詹益慈
Chan, Yi-Tsu
王迪彥
Wang, Di-Yan
口試日期: 2024/06/04
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 77
中文關鍵詞: 超分子建構單元剛性配位基結晶性骨架
英文關鍵詞: Supermolecular building block, rigid bridging linker, crystalline
DOI URL: http://doi.org/10.6345/NTNU202401122
論文種類: 學術論文
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1-1 孔洞材料 1 1-2 金屬有機骨架 4 1-3 金屬有機多面體 7 1-4 金屬有機多面體結構延伸 15 1-5 基於銠金屬有機截半立方體之延伸網絡結構 21 1-6 橋接配位基 28 1-7 研究動機 29 第二章 藥品與儀器 31 2-1 實驗藥品 31 2-2 實驗儀器 33 2-3 合成方法 37 第三章 結果與討論 41 3-1 銠金屬有機多面體與1,4-二氮雜二環[2.2.2]辛烷 45 3-2 銠金屬有機多面體與4,4'-聯吡啶 54 3-3 銠金屬有機多面體與吡嗪 57 第四章 結論 63 參考文獻 65 附錄A 73 附錄B 75

    Bennett, T. D.; Coudert, F.-X.; James, S. L.; Cooper, A. I., The changing state of porous materials. Nat. Mater. 2021, 20, 1179-1187.
    Giannakoudakis, D. A.; Bandosz, T., Detoxification of Chemical Warfare Agents. From WWI to Multifunctional Nanocomposite Approaches. 2018.
    Barrer, R. M., 435. Syntheses and reactions of mordenite. J. Chem. Soc., 1948, 2158-2163.
    Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C., The Preparation of Alkyltrimethylammonium–Kanemite Complexes and Their Conversion to Microporous Materials. Bull. Chem. Soc. Jpn. 1990, 63, 988-992.
    Vasconcelos, A. A.; Len, T.; de Oliveira, A. D.; Costa, A. A.; Souza, A. R.; Costa, C. E.; Luque, R.; Rocha Filho, G. N.; Noronha, R. C.; Nascimento, L. A. Zeolites: A Theoretical and Practical Approach with Uses in (Bio)Chemical Processes. Appl. Sci., 2023, 13, 1897.
    Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E., Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun., 2004, 230-231.
    Williams, K. A.; Boydston, A. J.; Bielawski, C. W., Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem. Soc. Rev. 2007, 36, 729-744.
    Zhou, H.; Long, J.; Yaghi, O. M. Introduction to Metal–Organic Frameworks. Chem. Rev., 2012, 112, 2, 673–674.
    Wang, H.; Dong, X.; Velasco, E.; Olson, D. H.; Han, Y.; Li, J., One-of-a-kind: a microporous metal–organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving. Energy Environ. Sci. 2018, 11, 1226-1231.
    Wu, Y.; Weckhuysen, B. M., Separation and Purification of Hydrocarbons with Porous Materials. Angew. Chem. Int. Ed. 2021, 60, 18930-18949.
    Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, X.; Han, Y.; Li, B.; Ren, Q.; Zaworotko, M. J.; Chen, B., Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016, 353, 141-144.
    Ahmed, A.; Seth, S.; Purewal, J.; Wong-Foy, A. G.; Veenstra, M.; Matzger, A. J.; Siegel, D. J., Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun 2019, 10, 1568.
    Siegelman, R. L.; Kim, E. J.; Long, J. R., Porous materials for carbon dioxide separations. Nat. Mater. 2021, 20, 1060-1072.
    Li, R.; Zhang, W.; Zhou, K., Metal-Organic-Framework-Based Catalysts for Photoreduction of CO(2). Adv. Mater. 2018, 30, e1705512.
    Perego, C.; Millini, R., Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev. 2013, 42, 3956-3976.
    Samanta, P.; Desai, A. V.; Let, S.; Ghosh, S. K., Advanced Porous Materials for Sensing, Capture and Detoxification of Organic Pollutants toward Water Remediation. ACS Sustain. Chem. Eng. 2019, 7, 7456-7478.
    Wu, S.; Lin, Y.; Liu, J.; Shi, W.; Yang, G.; Cheng, P., Rapid Detection of the Biomarkers for Carcinoid Tumors by a Water Stable Luminescent Lanthanide Metal–Organic Framework Sensor. Adv. Funct. Mater. 2018, 28, 1707169.
    Eram, S.; Fahmina, Z., Introductory Chapter: Metal Organic Frameworks (MOFs). InTech. doi: 10.5772/64797.
    Pan, X.; Zhu, Q.; Yu, K.; Yan, M.; Luo, W.; Tsang, S. C. E.; Mai, L., One-dimensional metal-organic frameworks: Synthesis, structure and application in electrocatalysis. Next Materials 2023, 1, 100010.
    Zhao, K.; Zhu, W.; Liu, S.; Wei, X.; Ye, G.; Su, Y.; He, Z., Two-dimensional metal–organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis. Nanoscale Adv. 2020, 2, 536-562.
    Naser, S. A.; Badmus, K. O.; Khotseng, L. Synthesis, Properties, and Applications of Metal Organic Frameworks Supported on Graphene Oxide. Coatings 2023, 13, 1456.
    Hadden, M.; Martinez-Martin, D.; Yong, K.-T.; Ramaswamy, Y.; Singh, G. Recent Advancements in the Fabrication of Functional Nanoporous Materials and Their Biomedical Applications Mater. Materials 2022, 15, 2111.
    Ettlinger, R.; Lächelt, U.; Gref, R.; Horcajada, P.; Lammers, T.; Serre, C.; Couvreur, P.; Morris, R. E.; Wuttke, S., Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chem. Soc. Rev. 2022, 51, 464-484.
    Sudik, A. C.; Côté, A. P.; Wong-Foy, A. G.; O'Keeffe, M.; Yaghi, O. M., A Metal–Organic Framework with a Hierarchical System of Pores and Tetrahedral Building Blocks. Angew. Chem. Int. Ed. 2006, 45, 2528-2533.
    Fracaroli, A. M.; Siman, P.; Nagib, D. A.; Suzuki, M.; Furukawa, H.; Toste, F. D.; Yaghi, O. M., Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal–Organic Framework Crystals. J. Am. Chem. Soc. 2016, 138, 8352-8355.
    Hou, B.; Qin, C.; Sun, C.; Wang, X.; Su, Z., Stepwise Construction of Multivariate Metal–Organic Frameworks from a Predesigned Zr16 Cluster. CCS Chemistry 2021, 3, 287-293.
    Yaghi, O. M. Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks. J. Am. Chem. Soc. 2016, 138 (48), 15507-15509.
    Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M., Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180.
    Li, J.-R.; Timmons, D. J.; Zhou, H.-C., Interconversion between Molecular Polyhedra and Metal−Organic Frameworks. J. Am. Chem. Soc. 2009, 131, 6368-6369.
    Chun, H.; Jung, H.; Seo, J., Isoreticular Metal-Organic Polyhedral Networks Based on 5-Connecting Paddlewheel Motifs. Inorg. Chem. 2009, 48, 2043-2047.
    Perry Iv, J. J.; Perman, J. A.; Zaworotko, M. J., Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 2009, 38, 1400-1417.
    Lee, S.; Jeong, H.; Nam, D.; Lah, M. S.; Choe, W., The rise of metal–organic polyhedra. Chem. Soc. Rev. 2021, 50, 528-555.
    Guillerm, V.; Kim, D.; Eubank, J. F.; Luebke, R.; Liu, X.; Adil, K.; Lah, M. S.; Eddaoudi, M., A supermolecular building approach for the design and construction of metal–organic frameworks. Chem. Soc. Rev. 2014, 43, 6141-6172.
    Khobotov-Bakishev, A.; Hernández-López, L.; von Baeckmann, C.; Albalad, J.; Carné-Sánchez, A.; Maspoch, D., Metal–Organic Polyhedra as Building Blocks for Porous Extended Networks. Adv. Sci 2022, 9, 2104753.
    Adeola, A. O.; Ighalo, J. O.; Kyesmen, P. I.; Nomngongo, P. N., Metal-Organic Polyhedra (MOPs) as emerging class of metal-organic frameworks for CO2 photocatalytic conversions: Current trends and future outlook. J. CO2 Util. 2024, 80, 102664.
    Gosselin, A. J.; Rowland, C. A.; Bloch, E. D., Permanently Microporous Metal-Organic Polyhedra. Chem Rev 2020, 120, 8987-9014.
    Carné-Sánchez, A.; Albalad, J.; Grancha, T.; Imaz, I.; Juanhuix, J.; Larpent, P.; Furukawa, S.; Maspoch, D., Postsynthetic Covalent and Coordination Functionalization of Rhodium(II)-Based Metal–Organic Polyhedra. J. Am. Chem. Soc. 2019, 141, 4094-4102.
    Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; Côté, A. P.; Kim, J.; Yaghi, O. M., Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra. J. Am. Chem. Soc. 2005, 127, 7110-7118.
    Furukawa, S.; Horike, N.; Kondo, M.; Hijikata, Y.; Carné-Sánchez, A.; Larpent, P.; Louvain, N.; Diring, S.; Sato, H.; Matsuda, R.; Kawano, R.; Kitagawa, S., Rhodium–Organic Cuboctahedra as Porous Solids with Strong Binding Sites. Inorg. Chem. 2016, 55, 10843-10846.
    Jiao, J.; Tan, C.; Li, Z.; Liu, Y.; Han, X.; Cui, Y., Design and Assembly of Chiral Coordination Cages for Asymmetric Sequential Reactions. J. Am. Chem. Soc. 2018, 140, 2251-2259.
    Jung, M.; Kim, H.; Baek, K.; Kim, K., Synthetic Ion Channel Based on Metal–Organic Polyhedra. Angew. Chem. Int. Ed. 2008, 47, 5755-5757.
    Yun, Y. N.; Sohail, M.; Moon, J.-H.; Kim, T. W.; Park, K. M.; Chun, D. H.; Park, Y. C.; Cho, C.-H.; Kim, H., Defect-Free Mixed-Matrix Membranes with Hydrophilic Metal-Organic Polyhedra for Efficient Carbon Dioxide Separation. Chem. Asian J. 2018, 13, 631-635.
    Cotton, F. A.; Murillo, C. A.; Walton, R. A., Multiple Bonds between Metal Atoms. Springer New York: 2005.
    Cotton, F. A.; Walton, R. A., Multiple Bonds Between Metal Atoms. Clarendon Press: 1993.
    Felthouse, T. R., The Chemistry, Structure, and Metal-Metal Bonding in Compounds of Rhodium(II). Prog. Inorg. Chem., 1982, 73-166.
    Chifotides, H. T.; Dunbar, K. R., Rhodium Compounds. In Multiple Bonds Between Metal Atoms, Eds. Springer US: Boston, MA, 2005, 465-589.
    Chernyaev, I.; Shenderetskaya, E.; Maiorova, A.; Koryagina, A., Formato Compounds of Rhodium (II). Russ. J. Inorg. Chem 1966, 11, 1383-1387.
    Cotton, F. A., Chromium Compounds. In Multiple Bonds Between Metal Atoms, Cotton, F. A.; Murillo, C. A.; Walton, R. A., Eds. Springer US: Boston, MA, 2005, 35-68.
    Kumar, D. K.; Filatov, A. S.; Napier, M.; Sun, J.; Dikarev, E. V.; Petrukhina, M. A., Dirhodium Paddlewheel with Functionalized Carboxylate Bridges: New Building Block for Self-Assembly and Immobilization on Solid Support. Inorg. Chem. 2012, 51, 4855-4861.
    Ueda, T.; Kurokawa, K.; Eguchi, T.; Kachi-Terajima, C.; Takamizawa, S., Local Structure and Xenon Adsorption Behavior of Metal−Organic Framework System [M2(O2CPh)4(pyz)]n (M = Rh and Cu) As Studied with Use of Single-Crystal X-ray Diffraction, Adsorption Isotherm, and Xenon-129 NMR. J. Phys. Chem. C, 2007, 111, 1524-1534.
    Takamizawa, S.; Nataka, E.-i.; Akatsuka, T.; Miyake, R.; Kakizaki, Y.; Takeuchi, H.; Maruta, G.; Takeda, S., Crystal Transformation and Host Molecular Motions in CO2 Adsorption Process of a Metal Benzoate Pyrazine (MII = Rh, Cu). J. Am. Chem. Soc. 2010, 132, 3783-3792.
    Cotton, A.; Murillo, C. A.; Walton, R. A. In Multiple bonds between metal atoms, 1982.
    Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M., Porous Metal−Organic Polyhedra:  25 Å Cuboctahedron Constructed from 12 Cu2(CO2)4 Paddle-Wheel Building Blocks. J. Am. Chem. Soc. 2001, 123, 4368-4369.
    Stang, P. J. Abiological Self-Assembly via Coordination: Formation of 2D Metallacycles and 3D Metallacages with Well-Defined Shapes and Sizes and Their Chemistry. J. Am. Chem. Soc. 2012, 134, 11829-11830.
    Richens, D. T., Ligand Substitution Reactions at Inorganic Centers. Chem. Rev. 2005, 105, 1961-2002.
    Vetromile, C. M.; Lozano, A.; Feola, S.; Larsen, R. W., Solution stability of Cu(II) metal–organic polyhedra. Inorganica Chim. Acta 2011, 378, 36-41.
    Mollick, S.; Fajal, S.; Mukherjee, S.; Ghosh, S. K., Stabilizing Metal–Organic Polyhedra (MOP): Issues and Strategies. Chem. Asian J. 2019, 14, 3096-3108.
    Wang, Z.; Furukawa, S., Pore-Networked Soft Materials Based on Metal–Organic Polyhedra. Acc. Chem. Res. 2024, 57, 327-337.
    Kim, D.; Liu, X.; Lah, M. S., Topology analysis of metal–organic frameworks based on metal–organic polyhedra as secondary or tertiary building units. Inorg. Chem. Front. 2015, 2, 336-360.
    Wang, Z.; Villa Santos, C.; Legrand, A.; Haase, F.; Hara, Y.; Kanamori, K.; Aoyama, T.; Urayama, K.; Doherty, C. M.; Smales, G. J.; Pauw, B. R.; Colón, Y. J.; Furukawa, S., Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization. Chem. Sci. 2021, 12, 12556-12563.
    Gosselin, A. J.; Decker, G. E.; Antonio, A. M.; Lorzing, G. R.; Yap, G. P. A.; Bloch, E. D., A Charged Coordination Cage-Based Porous Salt. J. Am. Chem. Soc. 2020, 142, 9594-9598.
    Nam, D.; Huh, J.; Lee, J.; Kwak, J. H.; Jeong, H. Y.; Choi, K.; Choe, W., Cross-linking Zr-based metal–organic polyhedra via postsynthetic polymerization. Chem. Sci. 2017, 8, 7765-7771.
    Guo, X.; Xu, S.; Sun, Y.; Qiao, Z.; Huang, H.; Zhong, C., Metal-organic polyhedron membranes for molecular separation. J. Memb. Sci. 2021, 632, 119354.
    Liu, J.; Duan, W.; Song, J.; Guo, X.; Wang, Z.; Shi, X.; Liang, J.; Wang, J.; Cheng, P.; Chen, Y.; Zaworotko, M. J.; Zhang, Z., Self-Healing Hyper-Cross-Linked Metal–Organic Polyhedra (HCMOPs) Membranes with Antimicrobial Activity and Highly Selective Separation Properties. J. Am. Chem. Soc. 2019, 141, 12064-12070.
    Zhao, J.; Cheng, L.; Liu, K.; Zhang, Z.; Yu, W.; Yan, X., Metal–organic polyhedra crosslinked supramolecular polymeric elastomers. Chem. Commun. 2020, 56, 8031-8034.
    McManus, G. J.; Wang, Z.; Zaworotko, M. J., Suprasupermolecular Chemistry:  Infinite Networks from Nanoscale Metal−Organic Building Blocks. Cryst. Growth Des. 2004, 4, 11-13.
    Grancha, T.; Carné-Sánchez, A.; Zarekarizi, F.; Hernández-López, L.; Albalad, J.; Khobotov, A.; Guillerm, V.; Morsali, A.; Juanhuix, J.; Gándara, F.; Imaz, I.; Maspoch, D., Synthesis of Polycarboxylate Rhodium(II) Metal–Organic Polyhedra (MOPs) and their use as Building Blocks for Highly Connected Metal–Organic Frameworks (MOFs). Angew. Chem. Int. Ed. 2021, 60, 5729-5733.
    Wang, Z.; Aoyama, T.; Sánchez-González, E.; Inose, T.; Urayama, K.; Furukawa, S., Control of Extrinsic Porosities in Linked Metal–Organic Polyhedra Gels by Imparting Coordination-Driven Self-Assembly with Electrostatic Repulsion. ACS Appl. Mater. Interfaces. 2022, 14, 23660-23668.
    Wang, H.-N.; Meng, X.; Yang, G.-S.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M.; Wang, C.-G., Stepwise assembly of metal–organic framework based on a metal–organic polyhedron precursor for drug delivery. Chem. Commun. 2011, 47, 7128-7130.
    Chun, H., Low-Level Self-Assembly of Open Framework Based on Three Different Polyhedra:  Metal-Organic Analogue of Face-Centered Cubic Dodecaboride. J. Am. Chem. Soc. 2008, 130, 800-801.
    Ghosh, A. C.; Legrand, A.; Rajapaksha, R.; Craig, G. A.; Sassoye, C.; Balázs, G.; Farrusseng, D.; Furukawa, S.; Canivet, J.; Wisser, F. M., Rhodium-Based Metal–Organic Polyhedra Assemblies for Selective CO2 Photoreduction. J. Am. Chem. Soc. 2022, 144, 3626-3636.
    Bilyachenko, A. N.; Korlyukov, A. A.; Vologzhanina, A. V.; Khrustalev, V. N.; Kulakova, A. N.; Long, J.; Larionova, J.; Guari, Y.; Dronova, M. S.; Tsareva, U. S.; Dorovatovskii, P. V.; Shubina, E. S.; Levitsky, M. M., Tuning linkage isomerism and magnetic properties of bi- and tri-metallic cage silsesquioxanes by cation and solvent effects. Dalton Trans. 2017, 46, 12935-12949.
    Lv, X. L.; Yuan, S.; Xie, L. H.; Darke, H. F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y. Z.; Li, J. R.; Zhou, H. C., Ligand Rigidification for Enhancing the Stability of Metal-Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 10283-10293.
    Colón, Y. J.; Furukawa, S., Understanding the role of linker flexibility in soft porous coordination polymers. Mol. Syst. Des. Eng. 2020, 5, 284-293.
    Handa, M.; Watanabe, M.; Yoshioka, D.; Kawabata, S.; Nukada, R.; Mikuriya, M.; Azuma, H.; Kasuga, K., Adduct Polymers and Dimers of Rhodium(II) Pivalate with Pyrazine, 4,4′-Bipyridine, 1,4-Diazabicyclo[2.2.2]octane, Triethylamine, and Pyridine. Bull. Chem. Soc. Jpn. 1999, 72, 2681-2686.
    Osterrieth, J. W. M.; Rampersad, J.; Madden, D.; Rampal, N.; Skoric, L.; Connolly, B.; Allendorf, M. D.; Stavila, V.; Snider, J. L.; Ameloot, R.; Marreiros, J.; Ania, C.; Azevedo, D.; Vilarrasa-Garcia, E.; Santos, B. F.; Bu, X.-H.; Chang, Z.; Bunzen, H.; Champness, N. R.; Griffin, S. L.; Chen, B.; Lin, R.-B.; Coasne, B.; Cohen, S.; Moreton, J. C.; Colón, Y. J.; Chen, L.; Clowes, R.; Coudert, F.-X.; Cui, Y.; Hou, B.; D'Alessandro, D. M.; Doheny, P. W.; Dincă, M.; Sun, C.; Doonan, C.; Huxley, M. T.; Evans, J. D.; Falcaro, P.; Ricco, R.; Farha, O.; Idrees, K. B.; Islamoglu, T.; Feng, P.; Yang, H.; Forgan, R. S.; Bara, D.; Furukawa, S.; Sanchez, E.; Gascon, J.; Telalović, S.; Ghosh, S. K.; Mukherjee, S.; Hill, M. R.; Sadiq, M. M.; Horcajada, P.; Salcedo-Abraira, P.; Kaneko, K.; Kukobat, R.; Kenvin, J.; Keskin, S.; Kitagawa, S.; Otake, K.-i.; Lively, R. P.; DeWitt, S. J. A.; Llewellyn, P.; Lotsch, B. V.; Emmerling, S. T.; Pütz, A. M.; Martí-Gastaldo, C.; Padial, N. M.; García-Martínez, J.; Linares, N.; Maspoch, D.; Suárez del Pino, J. A.; Moghadam, P.; Oktavian, R.; Morris, R. E.; Wheatley, P. S.; Navarro, J.; Petit, C.; Danaci, D.; Rosseinsky, M. J.; Katsoulidis, A. P.; Schröder, M.; Han, X.; Yang, S.; Serre, C.; Mouchaham, G.; Sholl, D. S.; Thyagarajan, R.; Siderius, D.; Snurr, R. Q.; Goncalves, R. B.; Telfer, S.; Lee, S. J.; Ting, V. P.; Rowlandson, J. L.; Uemura, T.; Iiyuka, T.; van der Veen, M. A.; Rega, D.; Van Speybroeck, V.; Rogge, S. M. J.; Lamaire, A.; Walton, K. S.; Bingel, L. W.; Wuttke, S.; Andreo, J.; Yaghi, O.; Zhang, B.; Yavuz, C. T.; Nguyen, T. S.; Zamora, F.; Montoro, C.; Zhou, H.; Kirchon, A.; Fairen-Jimenez, D., How Reproducible are Surface Areas Calculated from the BET Equation? Adv. Mater. 2022, 34, 2201502.
    Takacs, L., The historical development of mechanochemistry. Chem. Soc. Rev. 2013, 42, 7649-7659.
    Colombo, I.; Grassi, G.; Grassi, M., Drug mechanochemical activation. J Pharm Sci 2009, 98, 3961-86.
    Friščić, T., Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem. Soc. Rev. 2012, 41, 3493-3510.
    Bikiaris, D. N., Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 2011, 8, 1501-19.

    無法下載圖示 本全文未授權公開
    QR CODE