簡易檢索 / 詳目顯示

研究生: 袁通軒
Yuan, Tung-Shuian
論文名稱: 兩性離子型水膠/蒙托土複合材料的合成和性質研究
Study on the Synthesis and Properties of an Amphoteric Hydrogel/Montmorillonite Composite Material
指導教授: 許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 兩性離子型水膠合成蒙托土砂漿吸水率抗壓強度內部濕度乾縮自收縮
英文關鍵詞: zwitterionic, hydrogel, synthesis, montmorillonite, mortar, water absorbency, compressive strength, internal humidity, drying shrinkage, autogenous shrinkage
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.008.2019.B05
論文種類: 學術論文
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文主要目的為製備兩種兩性離子型的水膠P(AM/SB) 和(P(AM/SB)/MMT)係使用丙烯醯胺、甲基丙烯酸二甲基丙基磺酸胺乙酯 (SB)和蒙托土為單體,經自由基反應合成,利用FT-IR作水膠結構鑑定,探討單體比例和蒙托土含量對於水膠在各種水溶液下吸水率的影響。
    將P(AM/SB)/MMT水膠加到水泥漿和水泥砂漿中,作為自養護劑時,探討單體比例和蒙托土比例含量,對於水泥漿中水泥水化程度、圓盤裂縫和凝結時間的影響;以及對於水泥砂漿抗壓強度、內部濕度、乾縮量和自收縮量的影響。
    研究結果顯示, P(AM/SB)/MMT水膠:當AM/SB= 8, APS= 0.5 mol%, MBA= 2.0 mol%, MMT = 10 wt%時,在純水中和Pore solution中的最大吸水率分別為28.3 g/g和54.0 g/g。
    將P(AM/SB)/MMT水膠加入水泥砂漿中,當水膠劑量為0.2 wt%,粒徑為0.082 mm, 和蒙托土含量為10 wt%時,對水泥砂漿的抗壓強度和內部濕度增加、乾縮量減少、自收縮量減少和水泥漿的圓盤裂縫減低有最佳的提升效果。

    This thesis has prepared two zwitterionic hydrogels,Poly(acrylamide-co-sulfobetaine) (P(AM/SB)) and Poly(acrylamide-co-sulfobetaine)/montmorillonite (P(AM/SB)/MMT) by reactingacrylamide, N-(3-sulfopropyl)-N-methacroyloxyethyl-N,N-dimethyl-ammoniumbetaine(SB)and Montmorillonite through free radical polymerization.
    FT-IR was used to identify the functional groups of these hydrogels.
    The effects of monomer ratio, initiator and crosslinker dosage, andmontmorillonite content on the water absorbency of the resulted hydrogelsin various aqueous solutions were studied and discussed.
    P(AM/SB)/MMT hydrogel was added into cementitious materials. The effects of monomer ratio and Montmorillonite content on the weight loss, compressive strength, internal humidity, autogenous shrinkage and drying shrinkage in mortars, and the cracking index in cement pastes were determined and discussed.
    The results indicated that the highest water absorbency of all tested P(AM/SB)/MMT hydrogel with AM/SB = 8, APS = 0.5 mol%, MBA = 2.0 mole%, MMT = 10 wt% were 28.3 g/g in water and 54.0 g/g in Pore solution, repectively. P(AM/SB)/MMT hydrogel with 0.2 wt% dosage, particle size of 0.082 mm and 10 wt% Montmorillonite showed the best performance in cementitious materials. Namely, this polymer could decrease autogenous shrinkage and drying shrinkage, and increase the compressive strength and internal humidity in mortars, and reduce the craking formation in cement pastes.

    摘要 i Abstract iii 目錄 v 圖目錄 x 表目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 研究目的 3 1-3 研究內容 3 第二章 文獻回顧 4 2-1 高吸水性水膠簡介 4 2-2 有機/無機複合水膠簡介 9 2-3 蒙托土介紹 10 2-4 水泥 11 2-4-1 波特蘭水泥之組成 11 2-4-2 水泥之水化 12 2-4-3 水泥漿水份存在形式 14 2-4-4 混凝土收縮變形的種類 16 2-5 混凝土的養護 18 2-5-1 外部養護(external curing) 18 2-5-2 內部養護(internal curing) 20 2-6 水膠在混凝土中作為自養護劑的應用 20 第三章 水膠之合成與試驗 23 3-1 實驗流程 23 3-2 實驗材料與實驗設備 24 3-2-1 藥品 24 3-2-2 實驗儀器 26 3-3 實驗方法 27 3-3-1 P(AM/SB)水膠之合成 27 3-3-2 P(AM/SB)/MMT水膠之合成 28 3-4 聚合物結構分析與鑑定 30 3-4-1 紅外光(IR)光譜分析 30 3-4-2 電子顯微鏡 (JSM-6510) 表面結構 30 3-4-3 水膠吸水率之測量 31 3-4-4 水膠在鹽水溶液吸水率 32 3-4-5 水膠在拌合水中的吸水率 32 3-4-6 水膠在Pore Solution中的吸水率 32 3-4-7 水膠抗壓強度之測量 32 3-5 添加水膠的水泥漿之性質分析 33 3-5-1 水泥漿試體之拌製 33 3-5-2 水泥漿凝結時間測試 34 3-5-3 水泥漿圓盤裂縫測試 34 3-6 添加水膠的水泥砂漿之性質分析 36 3-6-1 水泥砂漿試體之拌製 36 3-6-2 水泥砂漿體內部濕度之測量 37 3-6-3 水泥砂漿試體抗壓強度之測量 37 3-6-4 水泥砂漿乾燥收縮之測量 37 3-6-5 水泥砂漿自體收縮之測量 38 第四章 結果與討論 40 4-1 聚合物之結構鑑定 40 4-1-1 單體紅外光光譜 40 4-1-2 聚合物IR光譜 42 4-1-3 水膠表面形態鑑定 43 4-1-4 水膠表面元素分布 44 4-2 反應條件對P(AM/SB)水膠吸水率之影響 47 4-2-1 單體比例對P(AM/SB)水膠吸水率之影響 47 4-2-2 蒙托土含量對P(AM/SB)水膠吸水率之影響 48 4-2-3 蒙托土含量對水膠密度之影響 50 4-3 不同吸水環境對P(AM/SB)水膠吸水率之影響 51 4-3-1 鹽水溶液濃度對水膠吸水率之影響 51 4-3-2 水膠在pore solution中的吸水率及保水率 53 4-3-2-1不同單體比例水膠在pore solution中的吸水率及保水率 54 4-3-2-2不同蒙托土含量水膠在pore solution中的吸水率及保水率 55 4-3-3 水膠在拌合水中的吸水率 57 4-3-4 不同單體比例對水膠抗壓強度的影響 58 4-3-5 不同蒙托土含量對水膠抗壓強度的影響 59 4-4 P(AM/SB)和P(AM/SB)/MMT水膠對砂漿性質的影響 60 4-4-1 水膠之蒙托土比例對水泥砂漿內部濕度的影響 60 4-4-2 水膠之蒙托土比例對水泥砂漿抗壓強度的影響 62 4-4-3 水膠之蒙托土比例對水泥砂漿乾縮量的影響 63 4-4-4 水膠之蒙托土比例對水泥砂漿自收縮量的影響 64 4-5 P(AM/SB)和P(AM/SB)/MMT水膠對水泥漿性質的影響 65 4-5-1 水膠單體比例對水泥漿凝結時間的影響 65 4-5-2 水膠之蒙托土比例對水泥漿凝結時間的影響 66 4-5-3 水泥漿之SEM分析表面結構 67 4-5-4 水泥漿之SEM表面元素分析 71 4-5-5 水膠劑量對水泥漿試體裂縫的影響 73 4-5-6 水膠之蒙托土比例對水泥漿試體裂縫的影響 74 第五章 結論 77 第六章 參考文獻 79

    1. M. Baniasadi, M.Minary-Jolandan, Alginate-Collagen Fibril Composite Hydrogel, Materials, 8, 799-814, 2015.
    2. E. Yetimoğlu, M. Kahraman, O. Ercan, Z. Akdemir, N. Apohan, N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: Synthesis, characterization and their application in the removal of heavy metals,Reactive and Funcional Polymers, 67, 451-460, 2007.
    3. F. H. A. Rodrigues, A. G. B. Pereira, A. R. Fajardo, E. C. Muniz, Synthesis and Characterization of Chitosan-graft-Poly(acrylic acid)/Nontronite Hydrogel Composites Based on a Design of Experiments, J Appl Polym Sci, 128, 3480–3489, 2013.
    4. A. S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews, 54, 3-12, 2002.
    5. T. T. Reddy, A. Takahara, Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications, Polymer, 50, 3537-3546, 2009.
    6. T. Chirila, An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application, Biomaterials, 22, 3311-3317, 2001.
    7. A. Cesaretti, B. Carlotti, P. L. Gentili, C. Clementi, R. Germani and F. Elisei, Doxycycline and oxytetracycline loading of a zwitterionic amphoteric surfactant-gel and their controlled release, Phys. Chem. Chem. Phys, 16, 23096-23107, 2014.

    8. O. M. Jensen, P. F. Hansen, Water-entrained cement-based materials II. Experimental observations, Cement Concr Res, 32(6), 973-978, 2002.
    9. Q. Zhu, C.W. Barney, A. E. Kendra, Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete, Materials and Structures, 48, 2261–2276, 2015.
    10. Q. Chen, HJ. Yu, L. Wang , Recent progress in chemical modification of starch and its applications, RSC Adv., 5, 67459–67474, 2015.
    11. J. P. Baker, H. W. Blanch, J. M. Prausnitzt, Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory, Polymer, 36, 1061-1069, 1995.
    12. XY. Liu, CH. Huang, CH. Zhuang, KC. Hsu, CH. Huang, An amphoteric hydrogel: Synthesis and application as an internal curing agent of concrete, J Appl Polym Sci, 132, 42175, 2015.
    13. X.Z. Zhang, Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide)Hydrogels, Langmuir, 17(20), 6094-6099, 2001.
    14. 佘勝雄, 利用二階段自由基共聚合製備酸鹼應答型水膠及性質探討, 中興大學化學工程研究所, 2002.
    15. X. P. Chen, G. R. Shan, Z. M. Huang, Synthesis and properties of acrylic-based superabsorbent, J Appl Polym Sci, 92(1), 619-634, 2004.
    16. S. Xu, L. Cao, R. Wu, J. Wang, Salt and pH responsive property of a starch-based amphoteric superabsorbent hydrogel with quaternary ammonium and carboxyl groups (II), J Appl Polym Sci, 101(3), 1995-1999, 2006.
    17. J. Baker, H. Blanch, J. Prausnitz, Swelling properties of acrylamide-based ampholytic hydrogels: Comparison of experiment with theory, POLYMER, 36, 1061-1069, 1995.
    18. P. J. Flory, Principle of Polymer Chemistry, 1953.
    19. Y. M. Mohan, P. S. K. Murthy, J. Sreeramulu, K. M. Raju, Swelling Behavior of Semi-Interpenetrating Polymer Network Hydrogels Composed of Poly(Vinyl Alcohol) and Poly(Acrylamide- co-Sodium Methacrylate), J Appl Polym Sci, 98, 302-314, 2005
    20. A. Pourjavadi, S. Barzegar, G. R. Mahdavinia, MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbonhydrate Polym, 66(3), 386-395, 2006.
    21. Z. S. Liu, G. L. Rempel, Preparation of Superabsorbent Polymers by Crosslinking Acrylic Acid and Acrylamide Copolymers, J Appl Polym Sci, 1345-1353, 1997.
    22. Y. Zheng, P. Li, J. Zhang, A. Wang, Study on superabsorbent composite XVI.Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites, Eur Polym J, 43, 1691-1698, 2007.
    23. A. Pourjavadi, A. M. Harzandi, H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air, Eur Polym J, 40, 1363-1370, 2004.
    24. A. Pourjavadi, and H. Salimi, New Protein-Based Hydrogel with Superabsorbing Properties: Effect of Monomer Ratio on Swelling Behavior and Kinetics, Ind. Eng. Chem. Res, 47, 9206-9213, 2008.
    25. Y. Bao, J. H. Maa, N. Li, Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Polym, 84, 76-82, 2011.
    26. S. R. Shirsath, A.P. Patil , B.A. Bhanvase , S.H. Sonawane, Ultrasonically prepared poly(acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater. J Environ Chem Eng , 3, 1152-1162, 2015.
    27. T. Wan, L. Xiong, R. Huang, M. Sun, L. Qin, X. Tan, J. Hu, Properties and structure of microcrystal muscovite composite superabsorbent. J Wuhan Univ of Technology-Mater. Sci. Ed., 29, 1302-1306, 2014.
    28. S. T. Oh, W. R. Kim, S. H. Kim, Y. C. Chung, J. S. Park, The Preparation of Polyurethane Foam Combined with pH-sensitive Alginate/Bentonite Hydrogel for Wound Dressings, Fibers Polymers, 12, 159-165, 2011.
    29. F. H. A. Rodrigues, A. G. B. Pereira, A. R. Fajardo, E. C. Muniz, Synthesis and Characterization of Chitosan-graft-Poly(acrylic acid)/Nontronite Hydrogel Composites Based on a Design of Experiments, J Appl Polym Sci, 128, 3480-3489, 2013.
    30. P. Liu, L. Jiang, L Zhu, J. Guo, A. Wang, Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions, J Ind Eng Chem, 23, 188–193, 2015.
    31. Ta-Peng Chang , Jeng-Ywan Shih , Kuo-Ming Yang , Tien-Chin Hsiao, Material properties of portland cement paste with nanomontmorillonite, J Mater Sci (2007) 42:7478–7487
    32. 楊思廉, 工業化學概論, 高立, 1992.
    33. W. Zhihong, H.Yucuia, H. Yuan, Research on increasing effect of solution polymerization for cement-based composite, Cement Concr Res, 33, 1655–1658, 2003.
    94. S. Xu, R. Wu, X. Huang, L. Cao and J. Wang, Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-co-diallyldimethylammonium chloride), J Appl Polym Sci, 102, 986-991, 2006.
    35. S. Hanehara, K. Yamada, Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology, Cem Concr Res, 29, 1159–1165, 1999.
    36. C. Jolicoeur, M. A. Simard, Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cem. Concr Composites 20, 87-101, 1998.
    37. 李文宏, 光纖量測技術於水泥質材料的熱膨脹系數與自體收縮之研究. 臺灣大學土木工程學研究所, 2004.
    38. P. Lura, O.M. Jensen, K. V. Breugel, Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem Concr Res, 33(2), 223-232, 2003.
    39. E.A.B. Koenders, K. V. Breugel, Numerical modelling of autogenous shrinkage of hardening cement paste, Cem Concr Res, 27(10), 1489-1499, 1997.
    40. 混凝土的養護方式,國產實業公司。
    http://www.gdc.com.tw/modules/tinyd0/index.php?id=7#05.
    41. S. Weber, H. W. Reinhardt, A New Generation of High Performance Concrete: Concrete with Autogenous Curing. Adv Cem Based Materials, 6(2), 59-68, 1997.
    42. H.X.D. Lee, H.S. Wong, N.R. Buenfeld, Self-sealing of cracks in concrete using superabsorbent polymers, Cement Concr Res, 79, 194–208, 2016.
    43. Kevadiya BD, Patel HA, Joshi GV, Abdi SH, Bajaj HC, Montmorillonite-Alginate Composites as a Drug delivery System: Intercalation and In vitro Release of Diclofenac sodium, Indian J Pharm Sci, 72(6):732-7, 2010.
    44. D. Snoeck, N. De Belie, From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing – A review, Constr Build Mater, 95, 774–787, 2015.
    45. V. Mechtcherine, E. Secrieru,S. Christof, Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars — Development of yield stress and plastic viscosity over time, Cement Concr Res, 67, 52–65, 2015.
    46. D. Snoeck, L.F. Velasco, A. Mignon, S. Van Vlierberghe, P. Dubruel,
    P. Lodewyckx, N. De Belie, The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments, Cement Concr Res, 77, 26–35, 2015.
    47. K. Kovler, S. Zhutovsky, Overview and future trends of shrinkage research. Materials and Structures, 39(9), 827-847, 2006.
    48. E. Holt, Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages, Cem Concr Res, 35(3), 464-472, 2005.
    49. O. M. Jensen, P. Lura, Techniques and materials for internal water curing of concrete. Mater Structures, 39(9), 817-825, 2006.
    50. R. Henkensiefken, D. Bentz, T. Nantung, J. Weiss, Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions, Cem Conc Composites, 31(7), 427-437, 2009.
    51. GR. de Sensale, AF. Goncalves, Effects of Fine LWA and SAP as Internal Water Curing Agents, Concrete Structures and Materials, 48, 2261–2276, 2015.
    52. GR. de Sensale, AF. Goncalves, Internal curing with lightweight aggregate produced from biomass-derived waste, Cement Concr Res, 59, 24–33, 2014.
    53. O. M. Jensen, P. F. Hansen, Water-entrained cement-based materials II. Experimental observations. Cement Concr Res, 32(6), 973-978, 2002.
    54. C. Rha, C. Kim, C. Lee, K. Kin, S. Lee, Preparation and characterization of absorbent polymer-cement composites. Cem Conc Res, 29(2), 231-236, 1999.
    55. L. Senff , R. C. E. Modolo, G. Ascensão, D. Hotza, V. M. Ferreira,
    J. A. Labrincha , Development of mortars containing superabsorbent polymer, Constr Build Mater, 95, 575–584, 2015.
    56. A. Mignon , D. Snoeck , D. Schaubroeck, N. Luickx , P. Dubruel ,
    S. V. Vlierberghe , N. D. Belie , pH-responsive superabsorbent polymers: A pathway to self-healing of mortar. , Reactive and Functional Polymers, 93, 68–76, 2015.
    57. L. P. Esteves, Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials, Materials and Structures, 48, 2397–2401, 2015.
    58. MT. Hasholt, OM. Jensen, Chloride migration in concrete with superabsorbent polymers, Cement Concr Res, 55, 290–297, 2015.
    59. S. Xu, R. Wu, X. Huang, L. Cao, J. Wang, Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly (acrylic acid-co-diallyl- dimethylammonium chloride). J Appl Polym Sci, 102(2), 986-991, 2006.
    60. J. Justs, M. Wyrzykowski, D. Bajare, P. Lura, Internal curing by superabsorbent polymers in ultra-high performance concrete, Cement Concr Res, 76, 82–90, 2015.
    61. P. Vontobel, J. Hovind, V. Mechtcherine, E. Lehmann, S. Christof, Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration, Cement Concr Res, 75, 1–13, 2015.
    62. D. Snoeck, D. Schaubroeck, P. Dubruel, N.D. Belie, Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50, Construction and Building Materials, 72, 148–157, 2014.
    63. Robert M. Silverstein, Francis X. Webster, Spectrometric identification of organic compounds, 6th edition, Wiley, New York, 1998
    64. Z. C. Grasley and D. A. Lange, Thermal dilation and internal relative humidity of hardened cement paste, Mater Structures, 40, 311–317, 2007.
    65. M. Wyrzykowski, P. Lura, Controlling the coefficient of thermal expansion of cementitious materials – A new application for superabsorbent polymers, Cem Conc Composites, 35, 49–58, 2013.
    66. M. Wyzykowski, P. Lura, The effect of external load on internal relative humidity in concrete, Cement Concr Res, 65, 58–63, 2014.
    67. M. Wyrzykowski, P. Lura, Controlling the coefficient of thermal expansion of cementitious materials – A new application for superabsorbent polymers, Cem Concr Compos, 35, 49–58, 2013.
    68. H. Beushausen, M. Gillmer, The use of superabsorbent polymers to reduce cracking of bonded mortar overlays, Cem Conc Composites, 52, 1–8, 2014.
    69. A. Assmann, H. W. Reinhardt, Tensile creep and shrinkage of SAP modified concrete, Cement Concr Res, 58, 179–185, 2014.
    70. H. Beushausen, M. Gillmer, M. Alexander, The influence of super- absorbent polymers on strength and durability properties of blended cement mortars, Cem Conc Composites, 10, 73-80, 2014.
    71. S. Laustsen, MT. Hasholt, OM. Jensen, Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete Materials and Structures, 48, 357–368, 2015.
    72. A. Assmann, H.W. Reinhardt, Tensile creep and shrinkage of SAP modified concrete. Cem Conc Res, 58, 179–185, 2014.
    73. XM. Kong, ZL. Zhang, ZC. Lu, Effect of pre-soaked superabsorbent polymer on shrinkage of high-strength concrete, Materials and Structures, 48, 2741–2758, 2015.
    74. D. Snoeck, O. M. Jensen, N. D. Belie, The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials, Cement Concr Res, 74, 59–67, 2015.
    75. H. Beushausen, M. Gillmer, M. Alexander, The influence of superabsorbent polymers on strength and durability properties of blended cement mortars, Cement Concr Res, 52, 73–80, 2014.
    76. M. J. Zohuriaan-Mehr, K. Kabiri, Superabsorbent Polymer Materials: A Review. Iran Polym J, 17(6), 451-477, 2008.
    77. Jensen, O. M. and P. F. Hansen, Water-entrained cement-based materials II. Experimental observations. Cement Concr Res, 32(6), 973-978, 2002.
    78. A. Li, J. Zhang, A. Wang, Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate super- absorbent composite, Polym Adv Tech, 16, 675–680, 2005.
    79. O. Bjontegaard, T. Hammer, E. Sellevold. Cracking in high performance concrete before setting, international symposium on high-performance and reactive powdwe concretes, 1-18, 1998.
    80. M. Wyrzykowski, P. Lura, Controlling the coefficient of thermal expansion of cementitious materials – A new application for superabsorbent polymers, Cem Conc Composites, 35, 49–58, 2013.
    81. W. Wang, Y. Kang and A. Wang, Synthesis, characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/ muscovite superabsorbent composites, Sci Tech Adv Mater, 11, 1088-1098, 2010 .
    82. K. Kabiri, M. J. Zohuriaan-Mehr, Superabsorbent Hydrogel Composites, Polym Adv Tech, 14, 438-444, 2003.
    83. Wang, W, A. Wang, Synthesis and swelling properties of pH- sensitive semi-IPN superabsorbent hydrogels based on sodium alginate- g-poly(sodium acrylate) and polyvinylpyrrolidone, Carbohydrate Polym, 80(4), 1028-1036, 2010.
    84. 詹炳根, 丁以兵, 超強吸水劑對混凝土早期內部相對濕度的影響,合肥工業大學學報, 29(9), 1151-1155, 2006.
    85. P. Chindaprasirta, S. Homwuttiwong, V. Sirivivatnanon, Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar, Cement Concr Res, 34, 1087–1092, 2004.
    86. P. C. S. Mishra, V. K. Narang, K. K, N. K. Singh, Effect of carboxymethyl-cellulose on the properties ofcement. Mater Eng, A 357, 13–19, 2003.

    無法下載圖示 本全文未授權公開
    QR CODE