簡易檢索 / 詳目顯示

研究生: 陳柏源
Po Yuan Chen
論文名稱: 具垂直異向性之一維磁性多層奈米線與磁性穿隧接面奈米元件
One dimensional magnetic multilayer nanowires and magnetic tunneling junction nanometer device with perpendicular anisotropy
指導教授: 黃昭淵
Huang, Chao-Yuan
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 61
中文關鍵詞: 奈米線磁阻磁性穿隧接面垂直磁異向性
英文關鍵詞: Nanowires, Magnetoresistance, Magnetic Tunneling Junction, Magnetic Perpendicular Anisotropy
論文種類: 學術論文
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具垂直磁異向性之奈米材料於發展下一代磁紀錄媒體與磁電阻式隨機存取記憶體扮演極重要的腳色。結合電化學電沉積技術與具奈米孔洞之氧化鋁模板可達成大量製造、低成本與高密度之目標。本研究所製備之鈷與鎳鐵合金之奈米線被證實具備垂直磁異向性且可透過磁晶異向性與形狀異向性來調整。結合具垂直磁異向性之鎳鐵合金奈米線與鈷鐵硼薄膜之磁性穿隧接面元件已成功被製造與探討。於低溫10K的環境下,鈷鐵硼薄膜厚度為1.5奈米時,其磁阻為104%,而鈷鐵硼薄膜厚度為1.0奈米時,其磁阻為110%,且在鈷鐵硼薄膜厚度小於1.0奈米時,於無固定層的條件下元件呈現出自旋閥的特性。

    The nanometer size magnetic materials with perpendicular anisotropy are more important to develop the next generation magnetic recording media or magnetoresistive random access memory. The magnetic nanowire via electrochemical deposition into the anodic alumina oxide template is one possible method to achieve the goal of massive fabrication, low cost and high density. The magnetic nanowires of cobalt and permalloy have demonstrated that the perpendicular anisotropy can be tunable by controlling the magnetocrystalline and shape anisotropy. The nanometer perpendicular magnetic tunnel junctions are prepared and the feasibility is also has been demonstrated. The TMR ratio o MTJs with 1.0 nm thick CoFeB layer are 110% at 10K and with 1.5 nm thick CoFeB layer are 104% at 10K. Below the 1.0 nm thick of CoFeB layer, the MTJs display the spin valve like properties without pinned layer and the spin quantum limitation was observed at 10K.

    Chapter 1. Introduction……………..…………….……….………………………..…..1 1.1 Nanomaterials…………………………………………………….…………….1 1.2 Synthesis of nanomaterials by electrochemical deposition…….……....………2 1.3 Principle of magnetic materials..……………………………………………4 1.3.1 Ferromagnetic materials……………….…………………………………..5 1.3.2 Magnetoresistance…………………….…………………………………6 1.3.3 Magnetic anisotropy………………………….……………….…………...7 1.3.3.1 Magnetocrystalline Anisotropy……………………………..…………...8 1.3.3.2 Shape Anisotropy……………….……………………….……………....9 1.4 Literature Review.………………………………..........................................10 1.5 Research Motivation.…………………………………………….…………12 Chapter 2. Characterization Techniques………………….……………………….....14 2.1 Anodic aluminum oxide template and nanowires preparations..…………...14 2.2 Cyclic voltammetry (CV).........................................………………………….15 2.3 Electrochemical Quartz Crystal Microbalance (QCM)……….………….….16 2.4 X-Ray Diffraction (XRD)………………………………………..………….17 2.5 Scanning Electron Microscope (SEM)…..………………………………….19 2.6 Transmission Electron Microscopy (TEM)…………………………………20 2.7 Energy-dispersive X-ray spectroscopy (EDS)………………………………21 2.8 Vibrating Sample Magnetometer (VSM)……….……………………………22 2.9 Superconducting Quantum Interference Device (SQUID)…………………23 Chapter 3. Magnetic Nanowires with Perpendicular Anisotropy….…..…………25 3.1 Enhancement of Perpendicular Anisotropy of Co/Cu Multilayer Nanowires by Phase Doping…………………………………….…………………………25 3.1.1 Introduction………………………………………………………………..25 3.1.2 Experimental………..…………………………………………………...26 3.1.3 Results and discussion……..…………………………………………….28 3.1.4 Conclusions………………………………………………………………..32 3.2 Controlling Magnetic Anisotropy of Permalloy/Cu by Electrochemical Deposition…………………………………………….…………….………34 3.2.1 Introduction………………………………………………………………..34 3.2.2 Experimental………..…………………………………………………...36 3.2.3 Results and discussion……..…………………………………………….37 3.2.4 Conclusions………………………………………………………………..42 3.3 Spin-Valve Like Perpendicular Magnetic Tunnel Junctions without pinned layer in Nano-Dimensioned……………..……….…………………………43 3.3.1 Introduction………………………………………………………………..43 3.3.2 Experimental………..…………………………………………………...44 3.3.3 Results and discussion……..…………………………………………….45 3.3.4 Conclusions………………………………………………………………..49 Chapter 4. Concluding Remarks……………………………..……………….………51 Chapter 5. Future Prospect……………………………………………………………52 References……………………………………………………………………………..53 Personal publications………………………………..…………………………………60

    Chapter 1. Introduction

    [1] X. Xu, X. Fang, H. Zeng, T. Zhai, Y. Bando, and D. Golberg, Sci. Adv. Mater. 2, 273 (2010).
    [2] Y. Li, G. S. Cheng, and L. D. Zhang, J. Mater. Res. 15, 2305 (2000).
    [3] Z. L. Wang, “Nanowires and Nanobelts: Materials, Properties and Devices”, Springer, 2005.
    [4] L. Li, Y. Yang, X. Huang, G. Li, and L. Zhang, Nanotechnology 17, 1706 (2006).
    [5] L. Heng, J. Zhai, A. Qin, Y. Zhang, Y. Dong, B. Z. Tang, and L. Jiang, ChemPhysChem 8, 1513 (2007).
    [6] J. Mathon, and A. Umerski, Phys. Rev. B 63, 220403 (2001).
    [7] B. D. Cullity, “Introduction to Magnetic Materials”, Addison-Wesley Publishing Company, 1972.
    [8] J. Sort, B. Rodmacq, S. Auffret, and B. Dieny, Appl. Phys. Lett. 83, 1800 (2003).
    [9] S. van Dijken, and J. M. D. Coey, Appl. Phys. Lett. 87, 022504 (2005).
    [10] T. Seki, S. Mitani, K. Yakushiji, and K. Takanashi, Appl. Phys. Lett. 88, 172504 (2006).
    [11] D. Lacour, M. Hehn, M. Alnot, F. Montaigne, F. Greullet, G. Lengaigne, O. Lenoble, S. Robert, and A. Schuhl, Appl. Phys. Lett. 90, 192506 (2007).
    [12] G. Kim, Y. Sakuraba, M. Oogane, Y. Ando, and T. Miyazaki, Appl. Phys. Lett. 92, 172502 (2008).
    [13] H. X. Wei, Q. H. Qin, Z. C. Wen, X. F. Han, and X.-G. Zhang, Appl. Phys. Lett. 94, 172902 (2009).
    [14] K. Mizunuma, S. Ikeda, J. H. Park, H. Yamamoto, H. Gan, K. Miura, H. Hasegawa, J. Hayakawa, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 95, 232516 (2009).
    [15] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mat. 9, 721 (2010).

    Chapter 2. Characterization Techniques

    [1] F. Scholz, “Electroanalytical Methods: Guide to Experiments and Applications”, Springer, 2002.
    [2] J. Janata, “Principles of Chemical Sensors”, Springer, 2009.
    [3] B.D. Cullity, “Elements of X-Ray Diffraction”, Prentice Hall, 2001.
    [4] C. E. Hall, “Introduction to Electron Microscopy”, McGraw-Joy, New York, 1953.
    [5] P. E. Champness, “Electron Diffraction in the Transmission Electron Microscope”, Garland Science, 2001.
    [6] B. Dziunikowski, “Energy Dispersive X-Ray Fluorescence Analysis”, Elsevier Science, 1989.
    [7] J. M. D. Coey, “Magnetism and Magnetic Materials”, Cambridge University Press, 2010.
    [8] D. B. Sullivan, “Superconducting quantum interference devices: an operational guide for rf-biased systems”, University of Michigan Library, 1972.

    Chapter 3. Magnetic Nanowires with Perpendicular Anisotropy

    3.1 Enhancement of Perpendicular Anisotropy of Co/Cu Multilayer Nanowires by Phase Doping

    [1] K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, and S. F. Fischer, Appl. Phys. Lett. 79, 1360 (2001).
    [2] C. A. Ross, R. Chantrell, M. Hwang, M. Farhoud, T. A. Savas, and Y. Hao, Phys. Rev. B 62, 14252 (2000).
    [3] M. Tanase, D. M. Silevitch, A. Hultgren, L. A. Bauer, P. C. Searson, and G. J. Meyer, J. Appl. Phys. 91, 8549 (2002).
    [4] D. H. Zhang, Z. Q. Liu, S. Han, C. Li, B. Lei, and M. P. Stewart, Nano Lett. 4, 2151 (2004).
    [5] Y. Peng, H. L. Zhang, S. L. Pan, and H. L. Li, J. Appl. Phys. 87, 7405 (2000).
    [6] H. Zeng, M. Zheng, R. Skomski, D. J. Sellmyer, Y. Liu, and L. Menon, J. Appl. Phys. 87, 4718 (2000).
    [7] G. J. Strijkers, J. H. J. Dalderop, M. A. A. Broeksteeg, H. J. M. Swagten, and W. J. M. de Jonge, J. Appl. Phys. 86, 5141 (1999).
    [8] V. M. Fedosyuk, O. I. Kasyutich, and W. Schwarzacher, J. Magn. Magn. Mater. 198-199, 246 (1999).
    [9] P. R. Evans, G. Yi, and W. Schwarzacher, Appl. Phys. Lett. 76, 481 (2000).
    [10] Y. K. Su, D. H. Qin, H. L. Zhang, H. Li, and H. L. Li, Chem. Phys. Lett. 388, 406 (2004).
    [11] N. Yasui, A. Imada, and T. Den, Appl. Phys. Lett. 83, 3347 (2003).
    [12] H. Pan, B. H. Liu, J. B. Yi, C. Poh, S. Lim, and J. Ding, J. Phys. Chem. B 109 3094 (2005).
    [13] P. F. Carcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).
    [14] F. J. A. Denbroeder, D. Kuiper, A. P. Vandemosselaer, and W. Hoving, Phys. Rev. Lett. 60 2769 (1988).
    [15] B. Heinrich, J. F. Cochran, M. Kowalewski, J. Kirschner, Z. Celinski, and A. S. Arrott, Phys. Rev. B 44, 9348 (1991).
    [16] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
    [17] L. Berger, Phys. Rev. B 54, 9353 (1996).
    [18] M. Darques, A. S. Bogaert, F. Elhoussine, S. Michotte, J. D. L. T. Medina, A. Encinas, and L. Piraux, J. Phys. D: Appl. Phys. 39, 5025 (2006).
    [19] J. U. Cho, Q. X. Liu, J. H. Min, S. P. Ko, and Y. K. Kim, J. Magn. Magn. Mater. 304, E213 (2006).
    [20] L. W. Tan, and B. J. H. Stadler, J. Mater. Res. 21, 2870 (2006).
    [21] K. Liu, K. Nagodawithana, P. C. Searson, C. L. Chien, Phys. Rev. B 51, 7381 (1995).
    [22] J. Yahalom, and O. Zadok, J. Mater. Sci. 22, 499 (1987).
    [23] A. Ursache, J. T. Goldbach, T. P. Russell, and M. I. Tuominen, J. Appl. Phys. 97, 10J322 (2005).
    [24] H. T. Cohen, W. D. Kaplan, and J. Yahalom, Electrochem. Sol. State Lett. 5, C75 (2002).
    [25] F. S. Li, T. Wang, L. Y. Ren, and J. R. Sun, J. Phys. : Condens. Mater. 16, 8053 (2004).

    3.2 Controlling Magnetic Anisotropy of Permalloy/Cu by Electrochemical Deposition

    [1] T. Mano, M. Abbarchi, T. Kuroda, B. McSkimming, A. Ohtake, K. Mitsuishi, and K. Sakoda, Appl. Phys. Express 3, 065203 (2010).
    [2] H. Fujisawa, R. Kuri, M. Shimizu, Y. Kotaka, and K. Honda, Appl. Phys. Express 2, 055003 (2009).
    [3] A. L. Rogach, D. V. Talapin, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, Adv. Funct. Mater. 12, 653 (2002).
    [4] E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, J. Am. Chem. Soc. 124, 11480 (2002).
    [5] C. B. Murray, C. R. Kagan, and M. G. Bawendi, Science 270, 1335 (1995).
    [6] E. V. Shevchenko, D. V. Talapin, A. Kornowski, F. Wiekhorst, J. Kotzler, M. Haase, A. L. Rogach, and H. Weller, Adv. Mater. 14, 287 (2002).
    [7] M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617 (2002).
    [8] G. Che, B. Lakshmi, E. Fisher, and C. Martin, Nature 393, 346 (1998).
    [9] A. Fert, and L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999).
    [10] D. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. Timko, and C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004).
    [11] Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, Adv. Mater. 18, 109 (2006).
    [12] A. Herland, P. Bjork, K. P. R. Nilsson, J. D. M. Olsson, P. Asberg, P. Konradsson, P. Hammarstrom, and O. Inganas, Adv. Mater. 17, 1466 (2005).
    [13] T. Bjornholm, T. Hassenkam, D. R. Greve, R. D. McCullough, M. Jayaraman, S. M. Savoy, C. E. Jones, and J. T. McDevitt, Adv. Mater. 11, 1218 (1999).
    [14] G. E. Possin, Rev. Sci. Instrum. 41, 772 (1970).
    [15] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. J. Levi, Appl. Phys. Lett. 83, 996 (2003).
    [16] I. Shao, M. W. Chen, R. C. Cammarata, P. C. Searson, and S. M. Prokes, J. Electrochem. Soc. 154, D572 (2007).
    [17] F. Kirino, N. Ohta, and N. Ogihara, J. Electrochem. Soc. 139, 187 (1992).
    [18] X. M. Liu, G. Zangari, and M. Shamsuzzoha, J. Electrochem. Soc. 150, C159 (2003).
    [19] M. Darques, J. Spiegel, J. De la Torre Medina, I. Huynen, and L. Piraux, J. Magn. Magn. Mater. 321, 2055 (2009).
    [20] A. Saib, M. Darques, L. Piraux, D. Vanhoenacker-Janvier, and I. Huynen, IEEE Trans. Microw. Theory Tech. 53, 2043 (2005).
    [21] J. F. Allaeys, B. Marcilhac, and J. C. Mage, J. Phys. D: Appl. Phys. 40, 3714 (2007).
    [22] J. Molla, M. Gonzalez, R. Vila, and A. Ibarra, J. Appl. Phys. 85, 1727 (1999).
    [23] S. Dubois, J. M. Beuken, L. Piraux, J. L. Duvail, A. Fert, J. M. George, and J. L. Maurice, J. Magn. Magn. Mater. 165, 30 (1997).
    [24] D. Morecroft, B. B. Van Aken, J. L. Prieto, D. J. Kang, G. Burnell, and M. G. Blamire, J. Appl. Phys. 97, 054302 (2005).
    [25] H. Chiriac, O. G. Dragos, M. Grigoras, G. Ababei, and N. LuPu, IEEE Trans. Magn. 45, 4077 (2009).
    [26] S. Dubois, L. Piraux, J. M. George, K. Ounadjela, J. L. Duvail, and A. Fert, Phys. Rev. B 60, 477 (1999).
    [27] J. R. Choi, S. J. Oh, H. Ju, and J. Cheon, Nano Letts. 5, 2179 (2005).
    [28] M. Chen, C. L. Chien, and P. C. Searson, Chem. Mater. 18, 1595 (2006).
    [29] H. Chiriac, T. A. Ovari, and P. Pascariu, J. Appl. Phys. 103, 07D919 (2008).
    [30] S. Dubois, C. Marchal, J. M. Beuken, and L. Piraux, Appl. Phys. Lett. 70, 396 (1997).

    3.3 Spin-Valve Like Perpendicular Magnetic Tunnel Junctions without pinned layer in Nano-Dimensioned

    [1] S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, and E. E.
    Fullerton, Nature Mater. 5, 210 (2006).
    [2] H. Meng, and J. P. Wang, Appl. Phys. Lett. 88, 172506 (2006).
    [3] G. M. Choi, B. C. Min, and K. H. Shin, Appl. Phys. Lett. 97, 202503 (2010).
    [4] H. Ohmori, T. Hatori, and S. Nakagawa, J. Appl. Phys. 103, 07A911 (2008).
    [5] L. Cagnon, Y. Dahmane, J. Voiron, S. Pairis, M. Bacia, L. Ortega, N. Benbrahim, and A. Kadri, J. Magn. Magn. Mater. 310, 2428 (2007).
    [6] T. Seki, S. Mitani, K. Yakushiji, and K. Takanashi, Appl. Phys. Lett. 88, 172504 (2006).
    [7] N. Kikuchi, Y. Suyama, S. Okamoto, and O. Kitakami, J. Appl. Phys. 109, 07B904 (2011).
    [8] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Mater. 9, 721 (2010).
    [9] C. E. Carreon-Gonzalez, J. D. Medina, L. Piraux, and A. Encinas, Nano Lett. 11, 2023 (2011).
    [10] P. Y. Chen, S. F. Hu, C. Y. Huang, and R. S. Liu, J. of Electromagn. Waves and Appl. 24, 1609 (2010).
    [11] C. M. Lee, L. X. Ye, T. H. Hsieh, C. Y. Huang, T. H. Wu, J. Appl. Phys. 107, 09C712 (2010).

    QR CODE