Basic Search / Detailed Display

Author: 李峻宇
Thesis Title: 以水熱法成長氧化鋅奈米結構應用於光電致色變元件
Advisor: 程金保
Degree: 碩士
Master
Department: 機電工程學系
Department of Mechatronic Engineering
Thesis Publication Year: 2008
Academic Year: 96
Language: 中文
Number of pages: 59
Keywords (in Chinese): 氧化鋅水熱法染料敏化太陽能電池光電致色變元件
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 190Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究利用水熱法在透明導電基板上製備出氧化鋅奈米線陣列,再將成長於上的奈米線陣列應用於染料敏化太陽能電池和光電致色變元件並量測其效率。透過改變成長參數和試片前處理,氧化鋅奈米線陣列在表面形貌上有很明顯的不同,當反應起始濃度越高時,氧化鋅的直徑也有增加的趨勢。不同的晶種層也會影響氧化鋅奈米結構的成長,在氧化鋅的晶種層上可以成功的長出垂直於基板的奈米線陣列,氧化鎢的晶種層則會長出二維片狀結構。奈米線的直徑直接影響著染料敏化太陽能電池的效率,當直徑越大時比表面積就越小,可吸附的染料量就會減少。透過氧化鋅奈米線陣列製備而成的光電致色變元件,在經過日光照射後可以改變穿透率,其著去色狀態在可見光區段最高可達16%。

    摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VII 第一章 序論 1 1-1 前言 1 1-2 節能窗與替代能源 1 1-3 研究動機與目的 4 第二章 基本理論與文獻回顧 5 2-1 電致色變簡介 5 2-1-1 電致色變材料 6 2-1-2 三氧化鎢基本性質 8 2-1-3 電致色變元件結構 9 2-1-4 電致色變機制 10 2-2 染料敏化太陽能電池 11 2-3 光電致色變元件簡介 13 2-3-1 光電致色變元件種類 13 2-4 氧化鋅簡介 16 2-4-1 氧化鋅奈米線的製作方式 16 第三章 實驗方法與步驟 19 3-1 實驗方法 20 3-1-1 基板清洗 20 3-1-2 氧化鋅鍍膜 20 3-1-3 氧化鎢鍍膜 23 3-1-4 退火處理 24 3-1-5 成長氧化鋅奈米結構 26 3-1-6 電解液配製 27 3-1-7 二氧化鈦薄膜 27 3-1-8 染料配製及使用 27 3-1-9 元件封裝 28 3-2 分析與量測 30 3-2-1 掃描式電子顯微鏡及能量分佈光譜儀 30 3-2-2 UV/VIS/NIR分光光譜儀 31 3-2-3 太陽能電池量測系統 32 3-3 主要實驗流程圖 33 第四章 結果與討論 34 4-1 不同成長參數的氧化鋅奈米結構 34 4-1-1 晶種層對氧化鋅奈米結構的影響 34 4-1-2 退火處理的影響 37 4-1-3 不同起始濃度的影響 40 4-1-4 不同比例的影響 44 4-1-5 不同起始濃度與不同比例的影響 47 4-2 元件測試 50 4-2-1 染料敏化太陽能電池 50 4-2-2 光電致色變元件分析 52 第五章 結論與未來展望 55 5-1 結論 55 5-2 未來展望 56 參考文獻 57

    參考文獻
    1. International Energy Agency, "World Energy Outlook 2007", (2007) p. 3.
    2. 經濟部能源局,"中華民國能源簡介",(2007) p. 14.
    3. 經濟部能源局,"2005能源科技白皮書",(2005) p. 322.
    4. 劉勇、沈輝、鄧幼俊,"光電致變色器件的研究發展",材料報導,20(4)(2006)pp. 15-18.
    5. http://www.bp.com/home.do?categoryId=1.
    6. J. B. Baxtera, E. S. Aydil, "Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires", Solar Energy Materials & Solar Cells, 90 (2006) pp. 607-622.
    7. J. Zhang, Y. Yang, S. Wu, S. Xu, C. Zhou, H. Hu, B. Chen, H. Han, X. Zhao, "Improved photovoltage and performance by aminosilane-modified PEO/P(VDF-HFP) composite polymer electrolyte dye-sensitized solar cells", Electrochimica Acta, 53 (2008) pp. 5415-5422.
    8. T. Minemoto, T. Mizuta, Hideyuki, Takakura, "Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells", Solar Energy Materials & Solar Cells, 91 (2007) pp.191-194.
    9. C.G. Granqvist, "Handbook of Inorganic Electrochromic Material", Elsevier, Amsterdam (1995).
    10. http://www.smartglass.com/default.asp.
    11. N. Ozer, C. M. Lampert, "Electrochromic characterization of sol-gel deposited coatings", Solar Energy Materials & Solar Cells, 54 (1998) pp. 147-156.
    12. J. livage, D. Ganguli, "Sol-gel electrochromic coatings and devices: A review", Solar Energy Materials & Solar Cell, 68 (2001) pp. 365-381.
    13. C. G. Granqvist , "Electrochromic tungsten oxide films Review of progress 1993–1998", Solar Energy Materials & Solar Cells, 60 (2000) pp. 201- 262
    14. J. Halme, "Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests", Master's thesis of Helsinki university of technology, (2002) p. 30.
    15. M. Grätzel, "Photoelectrochemical cells", Nature, 414 (2001) pp. 338-344
    16. http://www.solaronix.com/products/dyes/.
    17. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague & B. A. Gregg "Photoelectrochromic windows and displays", Nature, 383 Issue 6601 (1996), pp. 608-610.
    18. A, Hauch, A. Georg, S. Baumgartner, U. O. Krasovec, B. Orel, "New photoelectrochromic device", Electrochimica Acta 46(2001), pp. 2131-2136.
    19. K. S. Ahna, S. J. Yoo, M. S. Kang, J. W. Lee, Y. E. Sung, " Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window", Journal of Power Sources, 168 (2007), pp. 533–536.
    20. S. K. Deb, "Opportunities and challenges in science and technology of WO3 for electrochromic and related applications", Solar Energy Materials & Solar Cells, 92 (2008), PP. 245–258.
    21. Z. L. Wang, "Zinc oxide nanostructures: growth, properties andapplications", J. Phys.: Condens. Matter, 16 (2004) pp. 829–858.
    22. Q. X. Zhao, P. Klason, M. Willander, "Growth of ZnO nanostructures by vapor–liquid–solid method", Appl. Phys. A 88 (2007) pp.27–30.
    23. Y.H. Yang, C.X. Wang, B. Wang, N.S. Xu, G.W. Yang, "ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement", Chemical Physics Letters, 403 (2005) pp. 248–251.
    24. 徐旭政,"氣相傳輸法成長氧化鋅奈米線之光學特性研究",國立交通大學光電工程學系暨研究所博士論文,(2005) p. 8.
    25. L. Zhang, Y. Fang, and P. Zhang, "Laser-MBE of nickel nanowires using AAO template: A new active substrate of surface enhanced Raman scattering", Spectrochimica Acta, Part A vol. 69 (2008) pp.91–95.
    26. Z. R. Tian, J. A.Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, "Complex and oriented ZnO nanostructures", Nature Materials, vol. 2 (2003) pp. 821-826.
    27. C. H. Hung, W. T. Whang, "Low-temperature solution approach toward highlyaligned ZnO nanotip arrays", Journal of Crystal Growth, 268 (2004) pp. 242–248.
    28. 王瑞琪,新穎氧化鋅奈米材料的成長與光電性質,國立成功大學材料科學及工程研究所博士論文,(2006)

    無法下載圖示 This full text is not authorized to be published.
    QR CODE