Basic Search / Detailed Display

Author: 楊于薇
Yu-Wei Yang
Thesis Title: 利用理論計算探討Non-Innocent Ligand和Innocent Ligand應用在Ruthenium系統之水氧化反應的差異性
Theoretical Studies of the difference between Ruthenium complex with Non-Innocent and Innocent Ligands for Water Oxidation Reaction
Advisor: 蔡明剛
Tsai, Ming-Kang
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2012
Academic Year: 100
Language: 中文
Number of pages: 98
Keywords (in Chinese): 水氧化反應Non-Innocent Ligand釕金屬密度泛函理論Pourbiax diagrams
Keywords (in English): Water Oxidation Reaction, Non-Innocent Ligand, Ruthenium, Density Functional Theory, Pourbaix diagrams
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 138Downloads: 4
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  •   由文獻中得知Non-Innocent Ligand(NIL)有多變的電子特性,而第一個應用NIL在催化劑的是Tanaka等人所合成出的雙核催化劑,此結構為[Ru2(OH)2(3,6-tBu2Q)2(btpyan)]2+ (tBu2Q, 3,6-di-tert-butyl-1,2-benzoquinone; btpyan, 1,8-bis(2,2′:6′,2′′-terpyridyl)anthracene),發現turnover高達33,500並能夠產生出氧氣,而後Meyer等人利用單核催化劑[Ru(OH2)(Bpm)(tpy)]2+ (Bpm, 2,2'-bipyrimidine; tpy, 2,2':6',2"-terpyridine)證明只要單核催化劑就足夠將水氧化成氧氣,所以本篇利用電子結構、能量與吸收光譜圖分析NIL應用在Ruthenium單核催化劑上並與Innocent Ligand做比較,探討應用在Meyer所假設的水氧化反應機制之差異性。本篇研究結果發現NIL的特性能穩定中心金屬,分散金屬中心的電荷密度使之分子能量降低,因此Pourbaix Diagram相對於Innocent Ligand有多種結構存在於水溶液中,之後本篇藉由吸收光譜圖發現Meyer等人假設[RuV-O]3+的結構可能為[RuV(═O)(OH2)(tpy)(Bpm)]3+,另外Ru-NIL的催化劑從Ru(dπ)+Qn(π*)至Qn(π*)-Ru(dπ)的transition為MLCT且所需的能量相較於Innocent Ligand較低,還有藉由[RuV(═O)(OH2)]3+的吸收光譜圖觀察到H2O(pσ)上的電子激發至Ru(dπ*)+O(pπ*)+H2O(pσ*)的波長範圍在450-500 nm左右,Ru-NIL電子躍遷的能量較低且在可見光區內,或許在實驗中除了水溶液的酸鹼性和電壓外,可見光也能夠幫助此催化劑與H2O形成O-O鍵並完成催化循環,這個電子轉移的訊號或許可以透過以Transient Absorption Spectrum的方式,被利用來觀察O-O鍵形成的動力學光譜測量。

    The non-innocent ligand (NIL) has been reported to play an important role on molecular water-oxidation catalysis. The first NIL catalyst was introduced by Tanaka and coworkers where the electrochemical property of quinone in [Ru2(OH)2(3,6-tBu2Q)2(btpyan)]2+ (tBu2Q, 3,6-di-tert-butyl-1,2-benzoquinone; btpyan, 1,8-bis(2,2′:6′,2′′-terpyridyl)anthracene) is believed to be responsible for its novel catalytic ability. The current study focuses on a systematic comparison between two Ruthenium complexes with Non-innocent ligand(NIL) and innocent ligand from the perspective of energy, redox potential and molecular orbital theory. The calculated absorption spectra, Pourbiax diagrams and energy curve of these complexes will be presented. More importantly, the impact to the acid-base type of oxygen-oxygen bond formation mechanism given rise to two ligands will be discussed.
    The current study demonstrates the capability of NIL for redistributing the charge density in order to stabilize the metal complex based upon the results of the various electronic state assignments in Pourbaix Diagram. We also reassign the [RuV(═O)(OH2)(tpy)(Bpm)]3+ state as the [RuV-O]3+ by Meyer et al. The energy of transferring electron from H2O(pσ) excited to Ru(dπ*)+O(pπ*)+H2O(pσ*) with Ru-NIL is lower than innocent ligand. That suggest the potential of forming O-O bond through absorbing a visible photon. The signal of this water-to-catalyst electron transfer process may be utilized for monitoring the kinetic of O-O bond formation in a typical Transient Absorption Spectrum setup.

    圖目錄 II 表目錄 V 中文摘要 VII 英文摘要 VIII 第一章 緒論 1 1-1 前言 1 1-2 雙核催化劑 2 1-3 Non-innocent ligand(NIL)的特性 4 1-4 單核催化劑 6 1-5 研究目標 9 第二章 計算原理與方法 11 2-1 計算化學原理 11 2-2 密度泛函理論(Density Functional Theory, DFT) 13 2-3 基底函數組(Basis Sets)26 14 2-3-1 極化函數(Polarization Function) 15 2-3-2 擴散函數(Diffuse Function) 16 2-3-3 相關組成基底函數(Correlation-Consistent Basis Set) 16 2-3-4 Effective Core Potentials(ECP) 17 2-4 計算方法26 17 2-4-1 單點能量(Single point energy) 17 2-4-2 幾何優化(Geometry optimization) 17 2-4-3 振動頻率(Frequency) 19 2-4-4 溶劑模型(Solvation Model) 19 2-4-5 激發態的計算 21 2-5 在溶液中自由能、電位與pKa的計算 22 2-6 本篇論文採用的計算方法 24 第三章 結果與討論 25 3-1 前言 25 3-2 [Ru-OH2]2+氧化至[Ru-O]3+ 26 3-2-1 幾何結構比較與分析 26 3-2-2 幾何結構的光譜分析 28 3-2-3 Pourbaix diagram分析 57 3-3 形成O-O鍵的關鍵步驟 62 3-3-1 幾何結構比較與分析 62 3-3-2 [RuO-W]3+的分子軌域與吸收光譜圖分析 64 3-3-3 能量曲線圖分析 72 第四章 結論 87 參考文獻 89 附錄 92

    (1) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. 2006, 103, 15729.
    (2) Meyer, T. J.; Huynh, M. H. V.; Thorp, H. H. Angew. Chem. Int. Ed. 2007, 46, 5284.
    (3) Renger, G.; Renger, T. Photosynth. Res. 2008, 98, 53.
    (4) Alstrum-Acevedo, J. H.; Brennaman, M. K.; Meyer, T. J. Inorg. Chem. 2005, 44, 6802.
    (5) Romain, S.; Vigara, L.; Llobet, A. Acc. Chem. Res. 2009, 42, 1944.
    (6) Gersten, S. W.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4029.
    (7) Gilbert, J. A.; Eggleston, D. S.; Murphy, W. R.; Geselowitz, D. A.; Gersten, S. W.; Hodgson, D. J.; Meyer, T. J. J. Am. Chem. Soc. 1985, 107, 3855.
    (8) Binstead, R. A.; Chronister, C. W.; Ni, J.; Hartshorn, C. M.; Meyer, T. J. J. Am. Chem. Soc. 2000, 122, 8464.
    (9) James K, H. Coord. Chem. Rev. 2005, 249, 313.
    (10) Liu, F.; Concepcion, J. J.; Jurss, J. W.; Cardolaccia, T.; Templeton, J. L.; Meyer, T. J. Inorg. Chem. 2008, 47, 1727.
    (11) Sens, C.; Romero, I.; Rodríguez, M.; Llobet, A.; Parella, T.; Benet-Buchholz, J. J. Am. Chem. Soc. 2004, 126, 7798.
    (12) Zong, R.; Thummel, R. P. J. Am. Chem. Soc. 2005, 127, 12802.
    (13) Xu, Y.; Åkermark, T. r.; Gyollai, V.; Zou, D.; Eriksson, L.; Duan, L.; Zhang, R.; Åkermark, B. r.; Sun, L. Inorg. Chem. 2009, 48, 2717.
    (14) Wada, T.; Tsuge, K.; Tanaka, K. Inorg. Chem. 2000, 40, 329.
    (15) Kobayashi, K.; Ohtsu, H.; Wada, T.; Kato, T.; Tanaka, K. J. Am. Chem. Soc. 2003, 125, 6729.
    (16) Muckerman, J. T.; Polyansky, D. E.; Wada, T.; Tanaka, K.; Fujita, E. Inorg. Chem. 2008, 47, 1787.
    (17) Boyer, J. L.; Rochford, J.; Tsai, M.-K.; Muckerman, J. T.; Fujita, E. Coord. Chem. Rev. 2010, 254, 309.
    (18) Ghosh, S.; Baik, M.-H. Inorg. Chem. 2011, 50, 5946.
    (19) Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J. J. Am. Chem. Soc. 2008, 130, 16462.
    (20) Tseng, H.-W.; Zong, R.; Muckerman, J. T.; Thummel, R. Inorg. Chem. 2008, 47, 11763.
    (21) Concepcion, J. J.; Jurss, J. W.; Norris, M. R.; Chen, Z.; Templeton, J. L.; Meyer, T. J. Inorg. Chem. 2010, 49, 1277.
    (22) Concepcion, J. J.; Tsai, M.-K.; Muckerman, J. T.; Meyer, T. J. J. Am. Chem. Soc. 2010, 132, 1545.
    (23) Wang, L.-P.; Wu, Q.; Van Voorhis, T. Inorg. Chem. 2010, 49, 4543.
    (24) Huynh, M. H. V.; Meyer, T. J. Chemical Reviews 2007, 107, 5004.
    (25) R. L. Flurry, J. Quantum chemistry Englewood Cliffs, New Jersey.
    (26) Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaissian; Second Edition ed. Pittsburgh, PA.
    (27) Foresman, J. B. Exploring Chemistry with Electronic Structure Methods; 2th ed. Pittsburgh, 2000.
    (28) Young, D. Computational Chemistry:A Practical Guide for Applying Techniques to Real World Problems; 2th ed. New York, 2001.
    (29) Tsai, M.-K.; Rochford, J.; Polyansky, D. E.; Wada, T.; Tanaka, K.; Fujita, E.; Muckerman, J. T. Inorganic Chemistry 2009, 48, 4372.
    (30) Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.; Earhart, A. D.; Coe, J. V.; Tuttle, T. R. J. Phys. Chem. A 1998, 102, 7787.
    (31) Sadlej-Sosnowska, N. Theor. Chem. Acc. 2007, 118, 281.
    (32) Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011.
    (33) Jaque, P.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. C 2007, 111, 5783.
    (34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision A.1; Gaussian, Inc: Wallingford, CT, 2009.

    下載圖示
    QR CODE