Basic Search / Detailed Display

Author: 張雅帆
Chang, Ya-Fan
Thesis Title: 三角雙錐三價銅磷亞胺錯合物之合成機制與取代反應探討
Synthesis Mechanism and Replacement Study of Trigonal Bipyramidal Copper(III) Phosphineimine Complex
Advisor: 李位仁
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2016
Academic Year: 104
Language: 中文
Number of pages: 69
Keywords (in Chinese): 三價銅錯合物三角雙錐構形軸位配位基置換
Keywords (in English): copper(III) complex, trigonal bipyramidal, axial ligand exchange
DOI URL: https://doi.org/10.6345/NTNU202204529
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 92Downloads: 1
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 三角雙錐構形的三價銅錯合物[PPN][(TMSPS3)CuIII(NCBH3)] (2),可視為是CH3CN配位在三價銅的類似物[PPN][(TMSPS3)CuIII(NCCH3)],經由[PPN][(TMSPS3)CuIII(Cl)] (1) 和氰基硼氫化鈉(NaBH3CN)反應生成。另外,(TMSPS3)CuIII(NH=PPh3) (3) 可藉由錯合物1在THF下加入NaOMe而得,推測其反應機制是由NaOMe先與THF中少量的水產生OH-陰離子,及時生成的OH-陰離子再將[PPN]+打斷,產生O=PPh3以及NH=PPh3,生成的NH=PPh3會配位上三價銅金屬中心形成五配位的錯合物3。經由外加不同配位基(負電荷的N3-和電中性的DABCO)逐量滴定錯合物3,可知反應為1:1的配位基交換,並以UV-vis光譜儀觀測其變化,求得形成[PPN][TMSPS3CuIII(N3)]和TMSPS3CuIII(DABCO)的Keq分別為0.25和0.15,此結果顯示NH=PPh3的鍵結能力比DABCO和N3-強,推測可能與軸位配位基的鹼性及推電子能力有關。

    A trigonal bipyramidal copper(III) complex, [PPN][(TMSPS3)CuIII(NCBH3)] (2), an analogue of [PPN][(TMSPS3)CuIII(NCCH3)], was synthesized from the reaction of [PPN][(TMSPS3)CuIII(Cl)] (1) with sodium cyanoborohydride (NaBH3CN) in THF. Interestingly, complex 1 was converted to (TMSPS3)CuIII(NH=PPh3) (3) in THF as NaOMe was added. The added NaOMe is proposed to react with trace of water in THF solution to produce OH- anion. Then, the in-situ produced OH- anion attacks [PPN]+, and generates O=PPh3 and NH=PPh3. Further, NH=PPh3 coordinates to the copper(III) center to form the five-coordinate copper(III) complex. UV-vis titration of 3 by adding N3- (Keq = 0.25) or DABCO (Keq = 0.15) complies 1:1 ligand exchange in solution. This result demonstrates that the binding ability of NH=PPh3 ligand is strong than that of DABCO and N3-. This finding is related to basicity and donor capacity of the axial ligand.

    目錄 I 圖引索 III 表引索 VI 中文摘要 VII Abstract VIII 第一章 緒論 1 1-1 銅化學研究動機 1 1-2 單核三價銅文獻回顧 4 1-3 P(C6H3-3-SiMe3-2-SH)3配位的金屬錯合物回顧 8 1-4 研究方向 15 第二章 實驗部分 16 2-1實驗儀器及條件 16 2-2配位基之合成及鑑定 19 2-3錯合物之合成 20 2-4軸位配位基滴定實驗 24 第三章 結果與討論 26 3-1 錯合物1、2探討 26 3-1-1錯合物1之合成方法 26 3-1-2錯合物2之合成鑑定 29 3-1-3錯合物2的生成機制及反應性 31 3-2錯合物3探討 35 3-2-1錯合物3合成及探討 35 3-2-2錯合物3生成機制 38 3-2-3錯合物3電化學探討與比較 43 3-3錯合物軸位配位基鍵結能力探討 46 3-3-1錯合物3溶劑效應 46 3-3-2錯合物3軸位配位基取代反應 47 3-3-3含N軸位配位基之鍵結能力探討 50 第四章 結論與展望 53 參考文獻 55 附錄 58

    1.Sean T. Prigge, Aparna S. Kolhekar, Betty A. Eipper, Richard E. Mains, L. Mario Amzel Science 1997, 278, 1300-1305.
    2.Kazunari Yoshizawa, Naoki Kihara, Takashi Kamachi, Yoshihito Shiota Inorg. Chem. 2006, 45, 3034-3041.
    3.Alicia Casitas, Xavi Ribas Chem. Sci., 2013, 4, 2301-2318.
    4.Monika A. Willert-Porada, Donald J. Burton, Norman C. Baenziger J. Chem. Soc. Chem. Commun. 1989, 1633-1634.
    5.Hiroyuki Furuta, Hiromitsu Maeda, Atsuhiro Osuka J. Am. Chem. Soc. 2000, 122, 803-807.
    6.Xavi Ribas, Deanne A. Jackson, Bruno Donnadieu, Josÿ MahÌa, Teodor Parella, Ra¸l Xifra, Britt Hedman, Keith O. Hodgson, Antoni Llobet, T. Daniel P. Stack Angew. Chem. Int. Ed. 2002, 41, 2991-2994.
    7.Alicia Casitas, Amanda E. King, Teodor Parella, Miquel Costas, Shannon S. Stahl, Xavi Ribas Chem. Sci., 2010, 1, 326-330.
    8.Ryoko Santo, Riichi Miyamoto, Rika Tanaka, Takanori Nishioka, Kazunobu Sato, Kazuo Toyota, Makoto Obata, Shigenobu Yano, Isamu Kinoshita, Akio Ichimura, Takeji Takui Angew. Chem. Int. Ed. 2006, 45, 7611-7614.
    9.Eric Block, Gabriel Ofori-Okai, Jon Zubieta J. Am. Chem. Soc. 1989, 111, 2327-2329.
    10.Jodi D. Niemoth-Anderson, Kerry A. (Fusie) Clark, T. Adrian George, Charles R. Ross, II J. Am. Chem. Soc. 2000, 122, 3977-3978.
    11.Kerry A. (Fusie) Clark, T. Adrian George, Tom J. Brett, Charles R. Ross, II, Richard K. Shoemaker Inorg. Chem. 2000, 39, 2252-2253.
    12.Wei-Cheng Chu, Chi-Chin Wu, Hua-Fen Hsu Inorg. Chem. 2006, 45, 3164-3166.
    13.Hua-Fen Hsu, Wei-Cheng Chu, Chen-Hsiung Hung, Ju-Hsiou Liao Inorg. Chem. 2003, 42, 7369-7371.
    14.Ya-Ho Chang, Pooi-Mun Chan, Yi-Fang Tsai, Gene-Hsiang Lee, Hua-Fen Hsu Inorg. Chem. 2014, 53, 664-666.
    15.Chien-Ming Lee, Ya-Lan Chuang, Chao-Yi Chiang, Gene-Hsiang Lee, and Wen-Feng Liaw Inorg. Chem. 2006, 45, 10895-10904.
    16.Tzung-Wen Chiou, Wen-Feng Liaw Inorg. Chem. 2008, 47, 7908-7913.
    17.Chien-Ming Lee, Chien-Hong Chen, Fu-Xing Liao, Ching-Han Hu, Gene-Hsiang Lee J. Am. Chem. Soc. 2010, 132, 9256-9258.
    18.Shi-Lu Chen, Margareta R. A. Blomberg, Per E. M. Siegbahn Phys. Chem. Chem. Phys., 2014, 16, 14029-14035.
    19.Chien-Ming Lee, Chi-He Chuo, Ching-Hui Chen, Cho-Chun Hu, Ming-Hsi Chiang, Yu-Jan Tseng, Ching-Han Hu, Gene-Hsiang Lee Angew. Chem. Int. Ed. 2012, 51, 5427 -5430.
    20.Jeremy C. Stephens, Masood A. Khan, Robert P. Houser Inorg. Chem. 2001, 40, 5064-5065.
    21.Thomas P. Robinson, Richard D. Price, Matthew G. Davidson, Mark A. Fox, Andrew L. Johnson Dalton Trans., 2015, 44, 5611-5619.
    22.Hao-Ching Chang, Feng-Chun Lo, Wen-Chi Liu, Tsung-Han Lin, Wen-Feng Liaw, Ting-Shen Kuo, Way-Zen Lee Inorg. Chem. 2015, 54, 5527-5533.
    23.林宗翰,國立台灣師範大學化學研究所碩士論文,2011。
    24.劉玟季,國立台灣師範大學化學研究所碩士論文,2013。
    25.張皓晴,國立台灣師範大學化學研究所博士論文,2015。

    下載圖示
    QR CODE