Author: |
陳稚愷 Chen, Jhin-Kai |
---|---|
Thesis Title: |
含銅蛋白質活性中心之擬態化合物研究— 含氮硫三牙基之一價錯合物之合成、結構及反應性探討 Synthesis, Structure, and Reactivity of Tridentate N/S Ligand of Copper(I) Complexes—Mimics for the Active Site of Copper Containing Proteins |
Advisor: | 李位仁 |
Degree: |
碩士 Master |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2009 |
Academic Year: | 97 |
Language: | 中文 |
Number of pages: | 94 |
Keywords (in Chinese): | 含銅蛋白 、擬態化合物 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 102 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
為了模擬藍銅蛋白以及胜肽甘胺酸-羥化氧化酶(Peptidylglycine -hydroxylating monooxygenase,簡稱PHM)的活性中心,我們合成出兩個含氮硫之三牙配位基(BMIMS)與(MITMB),並成功地合成出兩個具有BMIMS與MITMB的一價銅錯合物:[Cu2(BMIMS)2](CF3SO3)2 (1)和[Cu2(MITMB)2](CF3SO3)2 (4)。將錯合物1與硫醇鹽[SC6H4COO]2-、[SC6F5]-以及[SC6H4Si(CH3)3]-反應,其產物由核磁共振氫譜推測,有[Cu(BMIMS)SC6H4COO-]、[Cu(BMIMS)SC6F5]以及[Cu(BMIMS)SC6H4Si(CH3)3]的生成。將雙核結構的錯合物1和錯合物4與PPh3、CNC(CH3)3、CO等小分子反應則可形成一系列的單核錯合物:[Cu(BMIMS)PPh3](CF3SO3) (2)、[Cu(BMIMS)CNC(CH3)3](CF3SO3) (3)以及[Cu(MITMB)PPh3](CF3SO3) (5),而[Cu(BMIMS)(CO)](CF3SO3)與[Cu(MITMB)(CO)](CF3SO3)分子的生成由IR光譜鑑定,顯示錯合物1與4都具有良好的反應性。並且藉由核磁共振光譜與IR光譜,得知配子BMIMS的供給電子能力是略強於MITMB。若將氧氣與錯合物1在甲醇/乙腈溶液下反應,以紫外-可見光光譜偵測該溶液可發現在兩組電荷轉移吸收峰在304 nm 、352 nm類似於Cu(II)-OOH錯合物的吸收光譜。
In order to mimic the active site of blue copper protein and peptidylglycine hydroxylating monooxygenase (PHM), we have synthesized two N2S(thioether) ligands, bis(4-methylimidazol-5-yl- methyl) sulfide (BMIMS) and 2-(4-Methylimidazol-5-ylmethyl)- thiomethyl-1-methylbenzoimidazole (MITMB). Two Cu(I) complexes of BMIMS and MITMB, [Cu2(BMIMS)2](OTf)2 (1) and [Cu2(MITMB)2]- (OTf)2 (4) have been successfully synthesized and fully characterized. We aimed to model the active site of the reduced form of blue copper protein by reacting complex 1 with thiosalicylic acid, pentafluoro- thiophenol and 2-(trimethylsilyl)benzenethiol, respectively. 1H-NMR spectra of the isolate products suggested the formation of [Cu(BMIMS)- SC6H4COO-], [Cu(BMIMS)SC6F5] and [Cu(BMIMS)SC6H4Si(CH3)3]. The dinuclear complexes 1 and 4 exhibit excellent reactivities toward small molecules, such as PPh3, CNC(CH3)3, and CO. Mononuclear Cu(I) complexes, [Cu(BMIMS)PPh3](OTf) (2), [Cu(BMIMS)CNC(CH3)3](OTf) (3) and [Cu(MITMB)PPh3](OTf) (5), were formed and structurally characterized, and [Cu(BMIMS)(CO)](OTf), [Cu(MITMB)(CO)](OTf) were characterized by IR. NMR and IR spectra illustrate that BMIMS is a stronger electron-donating ligand compared to MITMB. The reaction of dioxygen with complex 1 in a methanol/acetonitrile mixed solution monitored by UV-vis spectroscopy exhibited two charge transfer absorption bands at 304 nm and 352 nm . The UV-vis spectrum of the resulting species is similar to that of copper(II) hydroperoxide complexes.
1. Edward I. Solomon, Angew. Chem. Int. Ed. 2001, 40, 4570 - 4590
2. Nar, H.; Messerschmidt, A.; Huber, R.; van de Kamp, M.; Canters, G. W. J. Mol. Biol. 1991, 221, 765.
3. Kitajima, N.; Fujisawa, K.; Tanaka, M. Adv. Inorg. Chem. 1992, 39, 1.
4. Ramshaw, J. A. M. Nature. 1978, 272, 319.
5. Richard H. Holm, Edward I. Solomon, Chem. Rev. 1996, 96, 2239 - 2314.
6. Lippard, S. J. Principle Of Bioinorganic chemisrtry; University Science Books:Mill
Vally, 1994, p 86 and p 237-242
7. Edward I. Solomon, Chem. Rev. 2004, 104, 419 - 458
8. L. Mario Amzel, Science, 1997, 278, 1300 - 1305
9. L. M. Amzela, Cell. Mol. Life Sci. 2000, 57, 1236 – 1259
10. L. Mario Amzel, Science, 2004, 304, 864 – 867
11. Kenneth D. Karlin, Inorg. Chem. 2006, 45, 10098 - 10107
12. Kazunari Yoshizawa, Inorg. Chem. 2006, 45, 3034 - 3041
13. http://en.wikipedia.org/wiki/Dopamine
14. Ibers, J. A. Proc. Natl. Acad. Sci. USA 1977, 74, 3114 - 3118
15. Marks, T. J.; Ibers, J. A. J. Am. Chem. Soc. 1979, 101, 4180 - 4192
16. Kitajima, N; Moro-oka, Y.; Fujisawa, K. J. Am. Chem. Soc. 1990, 112, 3210 - 3212
17. Kitajima, N.; Fujisawa, K.; Tanaka, M. J. Am. Chem. Soc, 1992, 114, 9232.- 9233
18. Nobumasa Kitajima, Thomas G, Spiro. J. Am. Chem. Soc. 1994, 116, 2585 – 2590
19. Patrick L. Holland, William B. Tolman. J. Am. Chem. Soc. 1999, 121, 7270 - 7271
20. Patrick L. Holland, William B. Tolman. J. Am. Chem. Soc. 2000, 122, 6331 - 6332
21. Jorg Sundermeyer, Siegfried Schindler, Angew. Chem. Int. Ed. 2004, 43, 4360 - 4363
22. Edward I. Solomon, Proc. Natl. Acad. Sci. 2004, 101, 13105 - 13110
23. Jorg Sundermeyer, Siegfried Schindler, Angew. Chem. Int. Ed. 2006, 45, 3867 – 3869
24. Kenneth D. Karlin, J. Am. Chem. Soc. 2007, 129, 264 - 265
25. Kenneth D. Karlin, Angew. Chem. Int. Ed. 2008, 47, 82 – 85
26. Vicent Moliner, J. Am. Chem. Soc. 2007, 129, 11700 - 11707
27. Judith P. Klinman, J. Biol. Chem. 2006, 281, 3013–3016.
28. Csoregh, I.; Kierkegaard, P.; Norrestam, R. Acta Crystallogr. 1975, B31, 314.
29. Lewin, A. H.; Michl, R. J. Chem. Commun. 1971, 1400 - 1401
30. Sorrell, T. N.; Jameson, D. L. J. Am. Chem. Soc. 1983, 105, 6013 - 6018
31. Sanyal, I.; Karlin, K. D.; Strange, R. W.; Blackburn, N. J. J. Am. Chem. Soc. 1993, 115, 11259 - 11270
32. Sorrell, T. N.; Malachowski, M. R. Inorg. Chem. 1983, 22, 1883 - 1887
33. Aboelella, N. W.; Reynold, A. M.; Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 2108 - 2109
34. Clainche, L. L.; Giorgi, M.; Reinaud, O. Eur. J. Inorg. Chem. 2000, 1931 - 1933
35. Schilstra, M. J.; Birker, P. J. M. W. L.; Verschoor, G. C.; Reedijk, J. Inorg. Chem. 1982, 21, 2637 - 2644
36. Gagne, R. R.; Allison, J. L.; Gall, R. S.; Koval, C. A. J. Am. Chem. Soc. 1977, 99, 7170 - 7178
37. W. L. Driessen, Synthetic Commu., 1988, 18, 1581 - 1588
38. Casella, L.; Gullotti, M.; Suardi, E., Dalton Trans. 1990, 2843 - 2851
39. Casella, L.; Gullotti, M.; Pintar, A.; Pinciroli, F.; Viganò, R., Dalton Trans. 1989, 1161 - 1169
40. Milner, E. S.; jun.; Snyder, S.; Joullié, M. M. J. Chem. Soc. 1964, 4151 - 4153
41. 周櫻旻,國立台灣師範大學化學研究所碩士論文,2003
42. Eric Block, J. Am. Chem. Soc. 1989, 111, 658 - 665
43. Toso, R; Sega, A; Mihalic, M; Kajfez F. Chim Ital. 1979, 109, 529
44. Dagdigian, J. V.; McKee, V.; Reed, C. A. Inorg. Chem. 1982, 21, 1332 - 1342
45. Gagné, R. R.; Allison, J. L.; Gall, R. S.; Koval, C. A. J. Am. Chem. Soc. 1977, 22,
7170.
46. Kenneth M. Nicholas, Inorg. Chem. 2007, 46, 2316 - 2321
47. Kenneth D. Karlin, Inorg. Chem. 2006, 45, 3004 - 3013
48. Steven H. Strauss, J. Am. Chem. Soc. 1994,116, 10003 - 10014
49. Christopher J. Cramer and Shinobu Itoh, Inorg. Chem. 2008, 47, 8222 - 8232
50. (a) Karlin, K. D. J. Am. Chem. Soc. 2003, 125, 634 - 635. (b) Neuhold, Y.-M.; Karlin, K. D.; Zuberbűhler, A. D. Inorg. Chem. 2003, 42, 1807 - 1824.
51. Dagdigian, J. V.; Reed, C. A. Inorg. Chem. 1979, 18, 2623 - 2626
52. Bosnich, B.; Downes, J. M.; Whelan, J. Inorg. Chem. 1981, 20, 1081 - 1086
53. Willem L. Driessen, Dalton Trans. 1990, 3175 -3182
54. Vivian Wing-Wah Yam, Inorg. Chem. 2001, 40, 3435 - 3442
55. Dance, I. G. Polyhedron 1986, 2, 1031.
56. Healy, P. C.; Bott, R. C.; Sagatys, D. S. Chem. Commun. 1998, 2403 - 2404
57. Ian G. Dance, Inorg. Chem. 1983, 22, 2883 - 2887
58. Nakamura, A.; Okamura, T.; Ueyama, N.; Ainscough, E. W.; Brodie, A. M.; Waters, J.M. J. Chem. Soc. Chem. Commun., 1993, 1658 - 1660
59. Vittal, J. J.; Lai, G. X.; Deivaraj, T. C. Inorg. Chem, 2000, 39, 1028 - 1034
60. Gunnoe, T. B.; Delp, S. A.; Munro-Leighton, C.; Goj, L. A. ; Ramírez, M. A.; Petersen, J. L.; Boyle, P. Inorg. Chem. 2007, 46, 2365 - 2367