Basic Search / Detailed Display

Author: 張 耀文
Thesis Title: APOS教學對七年級學生學習線型函數概念之影響
Advisor: 張幼賢
Degree: 碩士
Master
Department: 數學系
Department of Mathematics
Thesis Publication Year: 2013
Academic Year: 101
Language: 中文
Number of pages: 228
Keywords (in Chinese): 函數線型函數APOS表徵
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 286Downloads: 27
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究主要目的是以「線型函數」單元為主題,探討「APOS教學方式」與「傳統教學方式」兩種教學,對學生學習線型函數概念的影響。研究設計是採準實驗研究法。研究對象為台北市某國中七年級學生,分兩組為實驗組與對照組。實驗組進行APOS教學課程,對照組則進行傳統教學課程。
    兩組的教學教材,皆為翰林版國民中學數學課本第二冊與習作為主。但APOS教學活動是以Asiala等人(1996)所建立的「概念層次」為架構,將課本與習作重新依概念層次編排而成;傳統教學是依照翰林版國民中學數學課本第二冊所呈現的內容順序進行。
    研究依據Dubinsky(1991)所提出的概念發展層次:「動作」、「過程」、「物件」及「基模」,進行上述重組教材實驗教學,並設計線型函數測驗卷(後測及延後測),來安置學生在教學後與經過一段時間後(約莫一個月)的線型函數概念層次,以分析學生概念改變及保留情形。
    本研究主要發現如下:
    1.經過教學後,實驗組與對照組學生在後測的概念層次上以「百分比同質性檢定」未達顯著水準,但兩組在延後測時則得到 p^(**)=.041<.05,達到顯著水準。顯示接受APOS教學方式的學生概念保留的程度較傳統教學方式的學生高。
    2.實驗組在三次測驗中,學生進階至「物件」層次且維持的人數較對照組多,而退階至「動作」的人數亦較對照組少,顯示APOS教學方式對學生概念提升與理解有所助益。
    3.在三次測驗中,兩組在代數表徵與圖像表徵的延後測上,以「百分比同質性檢定」皆達到顯著水準;而表列表徵則在三次測驗中無顯著差異。顯示APOS 教學在函數的「代數表徵」與「圖像表徵」的概念保留上,有明顯助益。

    第一章 緒論 第一節 研究背景與研究動機…………………………………………… 1 第二節 研究目的與研究問題……………………………………… 9 第三節 理論架構………………………………………………………… 10 第四節 名詞界定………………………………………………………… 19 第二章 文獻探討 第一節 表徵之相關文獻探討…………………………………………… 20 第二節 概念形成的相關理論…………………………………………… 26 第三節 函數與線型函數之探討…………………………………… … 42 第三章 研究方法 第一節 研究設計………………………………………………………… 52 第二節 研究對象的介紹與分析………………………………………… 55 第三節 研究資源與工具………………………………………………… 56 第四節 研究步驟與過程………………………………………………… 72 第五節 研究限制………………………………………………………… 73 第四章 研究結果之分析與討論 第一節 APOS教學對學生概念學習之影響………………………… 74 第二節 APOS教學後各表徵答題情形分析………………………… 110 第五章 結論與建議 第一節 結論...……………………………………….…….……….…. 136 第二節 檢討與建議…………………………………………………….. 140 參考文獻 中文部份……………………………………………………………… 145 西文部份………………………………………………………………… 147 附錄 附錄一 重編線型函數教材……………………………………………. 154 附錄二 三次測驗試題內容……………………………………………. 186 附錄三 實驗組與對照組三次測驗安置情形一覽表…………………. 206 附錄四 實驗組與對照組三次測驗進退階情形一覽表………………. 211 附錄五 實驗組與對照組三次測驗各表徵安置情形一覽表………….213 附錄六 實驗組與對照組三次測驗各表徵進退階一覽表……………. 225

    一、中文部份:
    丁斌悅(民91),國二學生學習線型函數時的概念表徵發展研究。國立台灣師範大學數學研究所碩士論文。
    李士錡(2001),PME:數學教育心理。教師如何培養學生形成數學問題的能力。上海,中國,華東師範大學出版社。
    李柏華(2007)基於APOS理論的小學數學概念编排研究。華南師範大學。課程與教學研究所碩士論文。
    林文俊(民92),線型函數概念在國中數學課程中發展的脈絡。國立臺灣師範大學數學研究所碩士論文。
    吳佳起(民92)。函數單元學習前後的概念成長探討。國立臺灣師範大學。數學研究所碩士論文。
    吳依芳(民92)。建模教學活動對國二學生學習線型函數概念之影響。國立臺灣師範大學。數學研究所碩士論文。
    吳玫瑤(民90)。教學對高中生學習函數概念的影響。國立臺灣師範大學。數學研究所碩士論文。
    章建躍(2001)。數學學習論與學習指導。中國,人民教育出版社。
    教育部(民97),國民教育九年一貫課程綱要-數學學習領域。臺北:教育部。
    教育部(民98),普通高級中學課程綱要。臺北:教育部。
    張祖貴(譯)(民84)。西方文化中的數學(原作者:M. Kline)。臺北,九章出版社。
    張幼賢(2003)。青少年函數概念之發展研究(2/2)。行政院國家科學委員會專題研究計畫成果報告。(計畫編號:NSC91-2521-s-003-004)
    陳澤民(譯)(1995)。數學學習心理學(原作者:Skemp, R. R.)。臺北,九章出版社。(原文出版於1987)

    陳盈言(民90)。國二學生變數概念的成熟度對其函數概念發展的影響。國立臺灣師範大學。數學研究所碩士論文。
    粘孝瑲(民93)落實PCDC於國中數學課室之行動研究-以RME與APOS理論為基礎。國立彰化師範大學。科學教育研究所碩士論文。
    黃乃文(民94)。一個以函數觀點發展國中生代數思維的行動研究。國立臺灣師範大學。數學研究所碩士論文。
    喬連全(2001)APOS:一種建構主義的數學學習理論。全球教育展望,2001,(3):17-18。
    廖鳳蘭(民97)。利用APOS理論和PCDC教學模式改進國一學生負數概念發展之研究。國立彰化師範大學。科學教育研究所碩士論文。
    鄭維誠(民92),線型函數的學習對國二學生變數概念發展的影響。國立臺灣師 範大學。數學研究所碩士論文。
    歐陽降(譯)(1993),數學史概論(原作者:Howard Eves.)。臺北,曉園出版社。
    鮑建生、周超(2009)。數學學習的心理基礎與過程。中國, 上海教育出版社。
    翰林出版社(民100)。國中數學教師手冊第二冊。臺南市,翰林出版社。
    翰林出版社(民100)。國中數學課本第二冊。臺南市,翰林出版社。
    蕭淑娟(民100)。八年級學生處理線型函數情境問題之解題策略分析。國立臺灣師範大學。數學研究所碩士論文。
    簡嘉玟(民98)利用APOS和PCDC改進數學教學之行動研究---以乘法公式為例。國立彰化師範大學。科學教育研究所碩士論文。
    謝豐瑞、陳材河(民86),函數的一生。科學教育月刊,199,33-43。
    濮安山,史寧中(2007),從APOS理論看高中生對函數學習概念。數學教育學報第16卷第2期。

    二、西文部份:
    Asiala, M. , Brown, A., DeVries, D., Dubinsky, E., Mathews, D. and Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. Research in Collegiate Mathematics Education II, CBMS Issues in Mathematics Education, 6, 1-32.
    Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.
    Baker, B. , Hemenway, C and Trigueros, M. (2000) On Transformations of Basic Functions, Proceedings of the 12th ICMI Study Conference: The Future of the Teaching and Learning of Algebra, Vol.1. Helen Chick, Kaye Stacey, Jill Vincent & John. Vincent (eds. ) , The University of Melbourne, Australia, pp. 41-47.
    Biggs, J and Collis, K (1982). Evaluating the Quality of Learning: the SOLO taxonomy New York: Academic Press.
    Bruner, J. S. (1966). Toward a theory of instruction. Cambridge Mass: Harvard
    University Press.
    Daniel, R. , Dubinsky (Ed. ) Julie, H. , Devilyna, N. (1992). Dvevlopment of the Process Conception of Function. Educational Studies in Mathematics. Vol.23, No. 8, 247-285.
    Davis, R.B. (1984). Learning mathematics: the cognitive science approach to mathematics education. Norwood, NJ: Ablex.
    DeMarois, P. & Tall, D. O. (1999). Function: Organizing Principle or Cognitive Root? In O. Zaslavsky (Ed. ), Proceedings of the 23rd Conference of PME, Haifa, Israel, 2, 257–264.
    Dreyfus, A. , Jungwirth, E. & Eliovitch, R. (1900). Applying the "cognitive conflict" strategies for conceptual change-Some inplications, difficulties, and problems. Science Education 74 , 555-569
    Dreyfus, T. & Eisenberg, T. (1982). Intuitive functional concepts: A baseline study on intuitions. Journal for Research in Mathematics Education, 13(5), pp.360-380.
    Dubinsky E. (1991). Reflective abstraction in advanced mathematical thinking. In Tall, D. (Ed.)Advanced Mathematical Thinking, London:Riedel.
    Dubinsky, E. (1992). Development of the procss conception of function. Educational Studies in Mathematics, 23,247-258.
    Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton (Ed.). The teaching and learning of mathematics at university level: An ICMI study (pp. 275-282). Dordrecht: Kluwer Academic Publishers.
    Duffin, J. & Simpson, A. (1994). Exploring Understanding. In P. Gates(Ed. ), british Society for Research into Learning Mathematics (BSRLM) Proceedings of the Joint Conference hedl at Moat Houes Hotel. BSRLM/AMET, 23-30.
    Eisenberg, T. (1992). On the Development of a Sense for Functions In G. Harel and
    E.Dubinsky(Eds.), The concept of function: Aspects of epistemology and pedagogy, MAA notes 25, pp.153-174. Mathematical Association of America, Washington.
    Even, R. (1990). Subject matter knowledge for teaching and the case of function. Educational Studies in Mathematics, 21, pp.521-544.
    Even, R. (1998). Factors involved in linking representations of functions. Journal of Mathematical Behavior, 17(1), 105-121.
    Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: D.Reidel. Goldin, G. A. (1998a). Representational system, learning, and problem solving in
    mathematics. Journal of Mathematical Behavior, 17(2), 137-165.
    Goldin, G. A. (1998b). The PME working group on representations. Journal of Mathematical Behavior, 17, 283-301.
    Goldin, G. A. & Kaput, J. J. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. P. Steffe & P. Nesher (Eds.), Theories of mathematical learning (pp. 397-430). Mahwah, NJ: Erlbaum Associates.
    Gray & Tall (1993) Can You Count On It? Video available from Mathematics Education Research Centre, Warwick University, UK.
    Herscovics, N. (1989). Cognitive Obstacles Encountered in the Learning of Algebra. In Wagner, Sigrid and Carolyn Kieran, (Eds. ) Research issue in the Learning and Teaching of Algebra, Vol 4. Reston, VA: NCTM
    Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions.Journal for Research in Mathematics Education, 32(2), 195-222.
    Hiebert, J. (1986). Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: Lawrence Erlbaum.
    Hitt, F. (1998). Difficulties in the articulation of different representations linked to the concept of function. Journal of Mathematical Behavior, 17(1), 123-134.
    Janvier, C. (1987a). Translation processes in mathematics education. IN C. Janiver (Ed.), Problems of representations in mathematics learning and problem solving (27-31), Hillsdale, NJ: Lawrence Erlbaum Assoicates.
    Janvier, C. (1987b). The interpretation of comples Cartesian graphs representing situations – studies and teaching experiments, Unpublished Doctoral dissertation, University of Nottingham, Shell Center for Mathematics Education & Universite du Quebec a Montreal.
    Kabael, D (2009). The effects of the function machine on student’s understanding levelsand their image and definition for the concept of function.In Swars,S. L. ,Stinson,D. W. ,&Lemons-Smith,S. (Eds), Proceedings of the 31st annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education,58-64, Atlanta, GA: Georgia State University.
    Kabael, D. (2011). General Single Variable Functions to Two-variable Function, Function Machine and APOS. Educational Sciences:Theory & practice; Winter2011. vol.11. Issue1. p484-499, 16p, 1 diagram.
    Klausmeier, H. J., Ghatala, E. S. and Frayer, D. A. (1974), Conceptual Learning and Development, New York and London : Academic Press Inc.
    Leinhardt, G, Zaslavsky, O, and Stein M. (1990) Functions, Graphs and Graphing: Tasks, Learning and Teaching. Review of Educational Research , 60(1), 37-42.
    Lesh, R. (1979). Mathematical learning disabilities: Considerations for identification,
    diagnosis, and remediation. In R. Lesh, D. Mierkiewicz & M. G. Kantowski (Eds.) , Applied mathematical problem solving. Columbus, OH: ERIC/SMEAC.
    Lesh, R., Post, T. & Behr. (1987). Representations and translations among representations in mathematics learning and problem solving. Problem of representation in teaching and learning of mathematics (pp 33-40). Hillsdale, NJ:Lawrence Erlbaum.
    Markovits, Z., Eylon, B., & Bruckheimer, M. (1986). Functions today and yesterday. For the Learning of Mathematics, 6(2), 18–28.
    Markovits, Z. , Eylon, B. , & Bruckheimer, M. (1988). Difficulties Students Have with the Function Concept. In A. F. Coxford, (1988 yearbook Ed. ), The ideas of algebra, K-12, pp.43-60. University of Michigan.
    Martínez-Planell, R. & Trigueros Gaisman, M. (2009). Students' ideas on functions of two variables: Domain, range, and representations. In Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.). Proceedings of the 31st annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol.5, pp.73-80). Atlanta, GA: Georgia State University.
    Martinez, M.V. & Brizuela, B.M. (2006). A third grader’s way of thinking about linear function tables. Journal of Mathematical Behavior, 25(4), 285-298.
    Murray, J. (1981). The research of CSMS. In K. M. Hart, D. Kerslake, M. L. Brown, G. Ruddock, D. E. Kuchemann, & M. McCarthney (Eds.), Children’s understanding of Mathematics (pp. 1-8). London: John Murray
    NCTM (2000). National council of teachers of mathematics position statement on basic skills, Arithmetic teacher, 25 (1), 18-22
    NCTM, NCSM (1977), Position paper on Basic Mathematical Skills, Jan.1977.
    Norman, A. (1992). Teacher’s Mathematical Knowledge of the Concept of Function InG. Harel and E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy, MAA notes 25, pp.215-232. Mathematical Association of America, Washington.
    OECD (2001), Knowledge and Skills for Life – First Results from PISA 2000, OECD, Paris.
    Piaget, J. & Inhelder, B. (1969). The Psychology of the Child. Translated from the French by H. Weaver, New York:Basic Books.
    Pierce, R., Stacey, K. & Bardini, C. (2010). Linear functions: teaching strategies and students' conceptions associated with y = mx + c. Pedagogies: An International Journal, 5(3), 202-215.
    Pirie, S. & Kieren, T. (1994). Growth in mathematical understanding: How can we
    characterize it and how can we represent it? Educational Studies in Mathematics, 26,165-190.
    Rosch, E., Mervis, C. B., Gray, W., Johnson, D., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382-439.
    Sajka, M. (2003). A secondary school student understands of the concept of function – a case study. Educational Studies in Mathematics, 53, 229-254.
    Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same Coin. Educational Studies in Mathematics, 22, pp.1-36.
    Sfard, A. (1992). Operational Origins of Mathematical Objects and Quandary of
    Reification-The Case of function InG. Harel and E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy, MAA notes 25, pp.59-84. Mathematical Association of America, Washington.
    Sierpinska,A.(1992).On understanding the Notion of Fuction. In G. Harel and
    E. Dubinsky(Eds.) , The concept of function: Aspects of epistemology and
    pedagogy, MAA notes 25, pp.25-58. Mathematical Association of America,
    Washington.
    Skemp, R. R. (1971). The psychology of learning mathematics(1 se ed.). Harmondsworth: Penguin.
    Skemp, R. R. (1976). Relational and instrumental understanding. Mathematics Teaching, 77, 20-26.
    Stylianou, D. A. (2002). On the interaction of visualizationand analysis: the negotiation of a visual representation in expert problem solving. Journal of Mathematical Behavior, 21, 303-317.
    Tall, D (1999). Reflections on APOS theory in Elementary and Advance Mathematical Thinking. In O. Zaslavsky (Eds.), Proceedings of the 23rd Conference of PME, Haifa, Israel, 1, 111–118.
    Tall, D. O., Thomas, M. O. J., Davis, G. E., Gray, E. M. & Simpson A. P (2000). What is the object of the encapsulation of a process?, Journal of Mathematical Behavior, 18 (2), 1–19.
    Trigueros M. & Martinez-Planell. (2010). Geometrical representations in the learning of two variable functions, Educational Studies in Mathematics, 73(1), 3-19.
    Vinner, S. (1992) The function concept as a prototype for problems in mathematics
    learning, In E. Dubinsky & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 195-214). Washington, DC: Mathematical Association of Amer.
    Vinner, S. (2011).What should we expect from somebody who teaches mathematics in elementary schools. The Proceedings of the International Symposium on Elementary Math Teaching at Charles University (SEMT 11), Prague, August 21–26, 2001. (Eds. ) Novotná, J. , Moraová, H., 2011, 31–43.
    Warren, E. , T. Cooper and J. Lamb. (2006). Investigating functional thinking in the elementary classroom: Foundations of early algebraic reasoning. Journal of Mathematical Behavior 25:208-223.
    Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for mathematical education. In I. Harel, and S. Papert (eds.), Constructionism, Ablex Publishing Corporation, Norwood, NJ, pp. 193-203.
    Yen, C. L. & Law, C. K. (1992), Development of the function concept and instructional treatment design in middle school, National Science Council, NSC 81-011-S-003-30-A.

    下載圖示
    QR CODE