Basic Search / Detailed Display

Author: 林佳薇
Lin, Chia-Wei
Thesis Title: 以第十七型脊髓小腦運動失調症小鼠模式探討ERK活化與Purkinje神經細胞退化之相關性
Study the association between ERK activation and Purkinje cell degeneration using a mouse model of Spinocerebellar ataxia type 17
Advisor: 謝秀梅
Hsieh, Hsiu-Mei
Degree: 博士
Doctor
Department: 生命科學系
Department of Life Science
Thesis Publication Year: 2020
Academic Year: 108
Language: 英文
Number of pages: 98
Keywords (in Chinese): 脊髓小腦運動失調症第十七型脊髓小腦運動失調症神經退化性疾病神經膠細胞增生細胞外調節蛋白激酶細胞凋亡
Keywords (in English): Spinocerebellar ataxia, SCA17, ERK, gliosis, neurodegeneration, apoptosis
DOI URL: http://doi.org/10.6345/NTNU202001672
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 149Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 脊髓小腦共濟失調第十七型(SCA17)是常染色體顯性遺傳小腦共濟失調的一種亞型,是由TATA結合蛋白(TBP)基因中CAG / CAA重複序列的異常擴展所引起。SCA17的臨床特徵是漸進性共濟失調、痙攣、舞蹈症、類帕金森症和認知障礙。而於神經病理上,以小腦萎縮、Purkinje細胞丟失和神經膠質增生為SCA17疾病常見之特徵,並且最終導致共濟失調和行為障礙。實驗室先前已經建立了SCA17轉基因小鼠,以研究異常的TBP聚集體如何誘導SCA17病理作用。在這項研究中,我們主要分析了4-8周大的小鼠,即疾病發作的起始年齡。
    我們發現在4週齡大SCA17轉殖基因小鼠中,出現了Purkinje細胞減少,Purkinje細胞核中出現TBP蛋白的累積和小膠質細胞活化。研究尚發現自6週齡大SCA17轉殖基因小鼠,開始發生Purkinje細胞退化情況,亦同時出現星形膠質和Bergmann膠質細胞的增生,並且觀察到在增生的星形膠質細胞和Bergmann膠質細胞中, ERK有被顯著活化之現象。而6週齡大的SCA17轉基因小鼠,也表現出步態紊亂與運動不協調的情況。進一步確認Purkinje細胞死亡的分子機制,6週和8週齡大的SCA17轉基因小鼠中,Bax / Bcl2比例,活化態的caspase-3和89 kD片段的PARP都有顯著增加。綜和上述,SCA17小鼠自6週齡開始,步態異常及運動不協調的表現與神經病理發病的機制在時序上是相呼應的。我們的研究表明活化的pERK是存在星形膠質細胞和Bergmann膠質細胞中,並且可能導致SCA17小鼠小腦神經發炎現象及神經元凋亡。
    此外,我們篩選出了一種GSK3β潛力抑制劑PHA-767491,也已知是一種Cdc7 / CDK抑制劑。我們發現PHA-767491透過抑制神經炎症機制對蛋白質聚集相關疾病,如AD、SCA17各種模式均產生了神經保護作用。在SCA17小腦初代細胞培養和器官切片培養中,給予PHA-767491能降低神經膠質細胞的增生。在SCA17小鼠的動物模型中,給予PHA-767491亦可改善步態異常和降低了神經炎症情況,根據以上結果,我們認為聚焦在抑制神經炎症的途徑,可能是一種治療SCA17疾病的潛在策略。

    Spinocerebellar ataxia type 17 (SCA17) is one subtype of autosomal dominant cerebellar ataxia group caused by the CAG/CAA expansion in the TATA-binding protein (TBP) gene. The clinical features are progressive ataxia, spasticity, chorea, Parkinsonism and cognitive impairment. Cerebellar atrophy, Purkinje cell loss and gliosis are the neurological hallmarks of SCA17 disease, which ultimately lead to ataxia and behavioral disorders. We have established the SCA17 transgenic mice to study how abnormal TBP aggregates could induce the SCA17 pathology.

    In this study, we focused the analysis of mice at 4-8 week-old, the disease onset initiation age. We found that a reduction of Purkinje cell count, mutant TBP aggregation in the Purkinje cell nuclei and the activation of microglia appeared in the 4 week-old SCA17 transgenic mice. The degeneration of Purkinje cells occurs since 6 weeks old. The presence of astrogliosis and Bergmann’s gliosis was also observed since then. The activated ERK was identified in the reactive astrocytes and Bergmann’s glial cells. Simultaneously, SCA17 transgenic mice showed abnormal motor coordination. Furthermore, the expression of Bax/Bcl2 ratio, active caspase-3 and cleaved PARP were significantly increased in the 6- and 8- week-old SCA17 transgenic mice. The gait abnormalities and motor incoordination in the 6 week-old SCA17 mice are corresponded to the neurological pathogenesis. Our study suggests that the activation of ERK in astrocytes and Bergmann glia may contribute to the elevated gliosis and the neuronal apoptosis in the SCA17 mouse cerebellum.

    Further, we identified a potential GSK3 inhibitor PHA-767491, also known as Cdc7/CDK inhibitor, which has a neuroprotective effect by inhibiting the neuroinflammation in the protein aggregation diseases, AD and SCA17 models. PHA-767491 reduced the active glial cells in both the SCA17 primary and organotypic slice cultures. In addition, PHA-767491 improved the gait abnormalities and reduced inflammation in the SCA17 transgenic mice. From the above data, we suggest that inhibition of the neuroinflammatory pathways might be a potential therapeutic strategy for the SCA17 disease.

    Chapter 1. Introduction 1 Chapter 2. Specific aim 17 Chapter 3. Materials and methods 19 Chapter 4. Results 28 Chapter 5. Discussion 37 Reference 48 Appendixes 98

    Aldskogius, H., 2001. Microglia in neuroregeneration. Microsc Res Tech. 54, 40-6.
    Allen, N.J., Lyons, D.A., 2018. Glia as architects of central nervous system formation and function. Science. 362, 181-185.
    Bachiller, S., Jimenez-Ferrer, I., Paulus, A., Yang, Y., Swanberg, M., Deierborg, T., Boza-Serrano, A., 2018. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front Cell Neurosci. 12, 488.
    Bauer, P., Laccone, F., Rolfs, A., Wullner, U., Bosch, S., Peters, H., Liebscher, S., Scheible, M., Epplen, J.T., Weber, B.H., Holinski-Feder, E., Weirich-Schwaiger, H., Morris-Rosendahl, D.J., Andrich, J., Riess, O., 2004. Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington's disease-like phenotype. J Med Genet. 41, 230-2.
    Bellamy, T.C., 2006. Interactions between Purkinje neurones and Bergmann glia. Cerebellum. 5, 116-26.
    Bellettato, C.M., Scarpa, M., 2018. Possible strategies to cross the blood-brain barrier. Ital J Pediatr. 44, 131.
    Block, M.L., Hong, J.S., 2005. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 76, 77-98.
    Bruni, A.C., Takahashi-Fujigasaki, J., Maltecca, F., Foncin, J.F., Servadio, A., Casari, G., D'Adamo, P., Maletta, R., Curcio, S.A., De Michele, G., Filla, A., El Hachimi, K.H., Duyckaerts, C., 2004. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol. 61, 1314-20.
    Buckley, E., Mazza, C., McNeill, A., 2018. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture. 60, 154-163.
    Butts, T., Green, M.J., Wingate, R.J., 2014. Development of the cerebellum: simple steps to make a 'little brain'. Development. 141, 4031-41.
    Carange, J., Longpre, F., Daoust, B., Martinoli, M.G., 2011. 24-Epibrassinolide, a Phytosterol from the Brassinosteroid Family, Protects Dopaminergic Cells against MPP-Induced Oxidative Stress and Apoptosis. J Toxicol. 2011, 392859.
    Chaitanya, G.V., Steven, A.J., Babu, P.P., 2010. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal. 8, 31.
    Cai, Z., Hussain, M.D., Yan, L.J., 2014. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci. 124, 307-21.
    Chang, Y.C., Lin, C.Y., Hsu, C.M., Lin, H.C., Chen, Y.H., Lee-Chen, G.J., Su, M.T., Ro, L.S., Chen, C.M., Hsieh-Li, H.M., 2011. Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. J Neurochem. 118, 288-303.
    Chen, Z.Z., Wang, C.M., Lee, G.C., Hsu, H.C., Wu, T.L., Lin, C.W., Ma, C.K., Lee-Chen, G.J., Huang, H.J., Hsieh-Li, H.M., 2015. Trehalose attenuates the gait ataxia and gliosis of spinocerebellar ataxia type 17 mice. Neurochem Res. 40, 800-10.
    Chung, Y.H., Lin, C.W., Huang, H.Y., Chen, S.L., Huang, H.J., Sun, Y.C., Lee, G.C., Lee-Chen, G.J., Chang, Y.C., Hsieh-Li, H.M., 2020. Targeting Inflammation, PHA-767491 Shows a Broad Spectrum in Protein Aggregation Diseases. J Mol Neurosci. 70, 1140-1152.
    Cui, Y., Yang, S., Li, X.J., Li, S., 2017. Genetically modified rodent models of SCA17. J Neurosci Res. 95, 1540-1547.
    Cvetanovic, M., Ingram, M., Orr, H., Opal, P., 2015. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience. 289, 289-99.
    Di Prospero, N.A., Fischbeck, K.H., 2005. Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet. 6, 756-65.
    Dong, X., 2018. Current Strategies for Brain Drug Delivery. Theranostics. 8, 1481-1493.
    Dusart, I., Flamant, F., 2012. Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis? Front Neuroanat. 6, 11.
    Evert, B.O., Vogt, I.R., Kindermann, C., Ozimek, L., de Vos, R.A., Brunt, E.R., Schmitt, I., Klockgether, T., Wüllner, U., 2001. Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. The Journal of neuroscience. 21, 5389-5396.
    ElAli, A., Rivest, S., 2016. Microglia Ontology and Signaling. Frontiers in cell and developmental biology, 4, 72.
    Elmore, S., 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol. 35, 495-516.
    Fan, H.C., Ho, L.I., Chi, C.S., Chen, S.J., Peng, G.S., Chan, T.M., Lin, S.Z., Harn, H.J., 2014. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant. 23, 441-58.
    Fan, J., Dawson, T.M., Dawson, V.L., 2017. Cell Death Mechanisms of Neurodegeneration. Adv Neurobiol. 15, 403-425.
    Friedman, M.J., Shah, A.G., Fang, Z.H., Ward, E.G., Warren, S.T., Li, S., Li, X.J., 2007. Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci. 10, 1519-28.
    Fujioka, S., Sundal, C., Wszolek, Z.K., 2013. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 8, 14.
    Fujigasaki, H., Martin, J.J., De Deyn, P.P., Camuzat, A., Deffond, D., Stevanin, G., Dermaut, B., Van Broeckhoven, C., Durr, A., Brice, A., 2001. CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain. 124, 1939-47.
    Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., Gage, F.H., 2010. Mechanisms underlying inflammation in neurodegeneration. Cell. 140, 918-34.
    Guyenet, S.J., Furrer, S.A., Damian, V.M., Baughan, T.D., La Spada, A.R., Garden, G.A., 2010. A simple composite phenotype scoring system for evaluating mouse models of cerebellar ataxia. J Vis Exp.
    Haines, J.D., Fulton, D.L., Richard, S., Almazan, G., 2015. p38 Mitogen-Activated Protein Kinase Pathway Regulates Genes during Proliferation and Differentiation in Oligodendrocytes. PLoS One. 10, e0145843.
    Harper, S.J., Wilkie, N., 2003. MAPKs: new targets for neurodegeneration. Expert Opin Ther Targets. 7, 187-200.
    Hsu, C.J., Hsu, W.C., Lee, D.J., Liu, A.L., Chang, C.M., Shih, H.J., Huang, .H., Lee-Chen, G.J., Hsieh-Li, H.M., Lee, G.C., Sun, Y.C., 2017. Investigation of the bindings of a class of inhibitors with GSK3beta kinase using thermodynamic integration MD simulation and kinase assay. Chem Biol Drug Des. 90,272-281
    Huang, D.S., Lin, H.Y., Lee-Chen, G.J., Hsieh-Li, H.M., Wu, C.H., Lin, J.Y., 2016. Treatment with a Ginkgo biloba extract, EGb 761, inhibits excitotoxicity in an animal model of spinocerebellar ataxia type 17. Drug Des Devel Ther. 10, 723-31.
    Ibrahim, M.F., Power, E.M., Potapov, K., Empson, R.M., 2017. Motor and Cerebellar Architectural Abnormalities during the Early Progression of Ataxia in a Mouse Model of SCA1 and How Early Prevention Leads to a Better Outcome Later in Life. Front Cell Neurosci. 11, 292.
    Ishikawa, K., Watanabe, M., Yoshizawa, K., Fujita, T., Iwamoto, H., Yoshizawa, T., Harada, K., Nakamagoe, K., Komatsuzaki, Y., Satoh, A., Doi, M., Ogata, T., Kanazawa, I., Shoji, S., Mizusawa, H., 1999. Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry. 67, 86-9.
    Ito, M., Natsume, A., Takeuchi, H., Shimato, S., Ohno, M., Wakabayashi, T., Yoshida, J., 2009. Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway. J Neurotrauma. 26, 41-53.
    IJankowski, J., Miething, A., Schilling, K., Baader, S.L., 2009. Physiological purkinje cell death is spatiotemporally organized in the developing mouse cerebellum. Cerebellum. 8, 277-90.
    Jensen, E.C., 2013. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec (Hoboken). 296, 378-381.
    Kampinga, H.H., Bergink, S., 2016. Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol. 15, 748-759.
    Kamer, A.R., 2010. S 1 ystemic inflammation and disease progression in Alzheimer disease. Neurology. 74, 1157; author reply 1157-8.
    Kempuraj, D., Thangavel, R., Natteru, P.A., Selvakumar, G.P., Saeed, D., Zahoor, H., Zaheer, S., Iyer, S.S., & Zaheer, A., 2016. Neuroinflammation Induces Neurodegeneration. Journal of neurology, neurosurgery and spine. 1, 1003.
    King, M.K., Pardo, M., Cheng, Y., Downey, K., Jope, R.S., Beurel, E. 2014. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments. Pharmacology & therapeutics, 141, 1–12.
    Kiss, L., Bocsik, A., Walter, F.R., Ross, J., Brown, D., Mendenhall, B.A., Crews, S.R., Lowry, J., Coronado, V., Thompson, D.E., Sipos, P., Szabo-Revesz, P., Deli, M.A., Petrikovics, I., 2017. From the Cover: In Vitro and In Vivo Blood-Brain Barrier Penetration Studies with the Novel Cyanide Antidote Candidate Dimethyl Trisulfide in Mice. Toxicol Sci. 160, 398-407.
    Klockgether, T., Mariotti, C., Paulson, H.L., 2019. Spinocerebellar ataxia. Nat Rev Dis Primers. 5, 24.
    Koeppen, A.H., 2018. The neuropathology of the adult cerebellum. Handb Clin Neurol. 154, 129-149.
    Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., Yamada, M., Takahashi, H., Tsuji, S., 1999. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet. 8, 2047-53.
    Kudo, W., Lee, H.P., Smith, M.A., Zhu, X., Matsuyama, S., Lee, H.G., 2012. Inhibition of Bax protects neuronal cells from oligomeric Abeta neurotoxicity. Cell Death Dis. 3, e309.
    Lasek, K., Lencer, R., Gaser, C., Hagenah, J., Walter, U., Wolters, A., Kock, N., Steinlechner, S., Nagel, M., Zuhlke, C., Nitschke, M.F., Brockmann, K., Klein, C., Rolfs, A., Binkofski, F., 2006. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 129, 2341-52.
    Lattke, M., Reichel, S.N., Magnutzki, A., Abaei, A., Rasche, V., Walther, P., Calado, D.P., Ferger, B., Wirth, T., Baumann, B., 2017. Transient IKK2 activation in astrocytes initiates selective non-cell-autonomous neurodegeneration. Mol Neurodegener. 12, 16.
    Li, K., Li, J., Zheng, J., Qin, S., 2019. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis. 10, 664-675.
    Li, Y., Yokota, T., Gama, V., Yoshida, T., Gomez, J. A., Ishikawa, K., Sasaguri, H., Cohen, H. Y., Sinclair, D. A., Mizusawa, H., Matsuyama, S., 2007. Bax-inhibiting peptide protects cells from polyglutamine toxicity caused by Ku70 acetylation. Cell death and differentiation, 14, 2058-67.
    Liachko, N.F., McMillan, P.J., Guthrie, C.R., Bird, T.D., Leverenz, J.B., Kraemer, B.C., 2013. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol. 74, 39-52.
    Lieberman, A.P., Shakkottai, V.G., Albin, R.L., 2019. Polyglutamine Repeats in Neurodegenerative Diseases. Annu Rev Pathol. 14, 1-27.
    Lim, J.Y., Park, S.I., Oh, J.H., Kim, S.M., Jeong, C.H., Jun, J.A., Lee, K.S., Oh, W., Lee, J.K., Jeun, S.S., 2008. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res. 86, 2168-78.
    Liu, H., Chen, S., Guo, C., Tang, W., Liu, W., Liu, Y., 2018. Astragalus Polysaccharide Protects Neurons and Stabilizes Mitochondrial in a Mouse Model of Parkinson Disease. Med Sci Monit. 24, 5192-5199Llorens-Martin, M., Jurado, J., Hernandez, F., Avila, J., 2014. GSK-3beta, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 7, 46.
    Liu, H.B., Wang, L., Su, W.W. , Xie, X.-Q., 2014. ALzPlatform: An
    Alzheimer’s Disease Domain-Specific Chemogenomics Knowledgebase for Polypharmacology and Target Identification Research. J Comput Info Modeling. 54,1050-60.
    Male, D., Rezaie, P., 2001. Colonisation of the human central nervous system by microglia: the roles of chemokines and vascular adhesion molecules. Prog Brain Res. 132, 81-93.
    Maltecca, F., Filla, A., Castaldo, I., Coppola, G., Fragassi, N.A., Carella, M., Bruni, A., Cocozza, S., Casari, G., Servadio, A., De Michele, G., 2003. Intergenerational instability and marked anticipation in SCA-17. Neurology. 61, 1441-3.
    Manto, M.U., 2005. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 4, 2-6.
    McKay, B.E., Turner, R.W., 2005. Physiological and morphological development of the rat cerebellar Purkinje cell. J Physiol. 567, 829-50.
    Mebratu, Y., Tesfaigzi, Y., 2009. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 8, 1168-75.
    Mehanna, R., Itin, I., 2013. From normal gait to loss of ambulation in 6 months: a novel presentation of SCA17. Cerebellum. 12, 568-71.
    Menzies, F.M., Fleming, A., Caricasole, A., Bento, C.F., Andrews, S.P., Ashkenazi, A., Füllgrabe, J., Jackson, A., Jimenez Sanchez, M., Karabiyik, C., Licitra, F., Lopez Ramirez, A., Pavel, M., Puri, C., Renna, M., Ricketts, T., Schlotawa, L., Vicinanza, M., Won, H., Zhu, Y., … Rubinsztein, D.C., 2017. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron, 93, 1015–1034.
    Morris, G., Walker, A.J., Berk, M., Maes, M., Puri, B.K., 2018. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol. 55, 5767-5786.
    Montagnoli, A., Valsasina, B., Croci, V., Menichincheri, M., Rainoldi, S., Marchesi,
    V., Tibolla, M., Tenca, P., Brotherton, D., Albanese, C., Patton, V., Alzani, R., Ciavolella, A., Sola, F., Molinari, A., Volpi, D., Avanzi, N., Fiorentini, F.,
    Cattoni, M., Healy, S., Ballinari, D., Pesenti, E., Isacchi, A., Moll, J.,
    Bensimon, A., Vanotti, E., Santocanale, C., 2008. A Cdc7 kinase inhibitor
    restricts initiation of DNA replication and has antitumor activity. Nat Chem
    Biol. 4, 357-65.
    Mariotti, C., Alpini, D., Fancellu, R., et al., 200. Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol. 254:1538-1546.
    Munoz, L., Ammit, A.J., 2010. Targeting p38 MAPK pathway for the treatment of Alzheimer's disease. Neuropharmacology. 58, 561-8.
    Nakamura, K., 2001. [SCA17, a novel polyglutamine disease caused by the expansion of polyglutamine tracts in TATA-binding protein]. Rinsho Shinkeigaku. 41, 1123-5.
    Neher, J.J., Neniskyte, U., Brown, G.C., 2012. Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol. 3, 27.
    Neumann, H., 2001. Control of glial immune function by neurons. Glia. 36, 191-9.
    O'Leary, T.P., Robertson, A., Chipman, P.H., Rafuse, V.F., Brown, R.E., 2018. Motor function deficits in the 12 month-old female 5xFAD mouse model of Alzheimer's disease. Behavioural brain research. 337, 256-63.
    Paulson, H.L., Bonini, N.M., Roth, K.A., 2000. Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci U S A. 97, 12957-8.
    Penke, B., Bogár, F., Crul, T., Sántha, M., Tóth, M. E., & Vígh, L. 2018. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. International journal of molecular sciences, 19, 1
    Perez Maturo, J., Zavala, L., Vega, P., Gonzalez-Moron, D., Medina, N., Salinas, V., Rosales, J., Cordoba, M., Arakaki, T., Garretto, N., Rodriguez-Quiroga, S., Kauffman, M.A., 2020. Overwhelming genetic heterogeneity and exhausting molecular diagnostic process in chronic and progressive ataxias: facing it up with an algorithm, a gene, a panel at a time. J Hum Genet. 65, 895-902.
    Phillips, E.C., Croft, C.L., Kurbatskaya, K., O'Neill, M.J., Hutton, M.L., Hanger, D.P., Garwood, C.J., Noble, W., 2014. Astrocytes and neuroinflammation in Alzheimer's disease. Biochem Soc Trans. 42, 1321-5.
    Qiu, Z., Lu, P., Wang, K., Zhao, X., Li, Q., Wen, J., Zhang, H., Li, R., Wei, H., Lv, Y., Zhang, S., Zhang, P., 2020. Dexmedetomidine Inhibits Neuroinflammation by Altering Microglial M1/M2 Polarization Through MAPK/ERK Pathway. Neurochem Res. 45, 345-353.
    Rahimi-Balaei, M., Afsharinezhad, P., Bailey, K., Buchok, M., Yeganeh, B., Marzban, H., 2015. Embryonic stages in cerebellar afferent development. Cerebellum Ataxias. 2, 7.
    Reichel, A., 2009. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers. 6, 2030-49.
    Rolfs, A., Koeppen, A.H., Bauer, I., Bauer, P., Buhlmann, S., Topka, H., Schols, L., Riess, O., 2003. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol. 54, 367-75.
    San Gil, R., Ooi, L., Yerbury, J.J., Ecroyd H., 2017. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegeneration 12, 65.
    Sardar Pasha, S.P.B., Münch, R., Schäfer, P. et al. 2017. Retinal cell death dependent reactive proliferative gliosis in the mouse retina. Sci Rep. 7, 9517.
    Schols, L., Bauer, P., Schmidt, T., Schulte, T., Riess, O., 2004. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 3, 291-304.
    Serrao, M., Ranavolo, A., Casali, C., 2018. Neurophysiology of gait. Handb Clin Neurol. 154, 299-303.
    Stanimirovic, D.B., Sandhu, J.K., Costain, W.J., 2018. Emerging Technologies for Delivery of Biotherapeutics and Gene Therapy Across the Blood-Brain Barrier. BioDrugs. 32, 547-559.
    Streit, W.J., Mrak, R.E., Griffin, W.S., 2004. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 1, 14.
    Stroobants, S., Gantois, I., Pooters, T., D'Hooge, R., 2013. Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behavioural brain research. 241, 32-7.
    Sun, Y.M., Lu, C., Wu, Z.Y., 2016. Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet. 90, 305-14.
    Suzumura, A., 2013. Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci. 14, 16-20.
    Sweeney, P., Park, H., Baumann, M., Dunlop, J., Frydman, J., Kopito, R., McCampbell, A., Leblanc, G., Venkateswaran, A., Nurmi, A., &Hodgson, R., 2017. Protein misfolding in neurodegenerative diseases: implications and strategies. Translational neurodegeneration, 6, 6.
    Manouchehrian, O., Bachiller, S., Deierborg, T., 2018. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci. 12, 323.
    Möller, T., Neuroinflammation in Huntington’s disease. J Neural Transm. 117, 1001-1008.
    Pardridge, W.M., 2012. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 32, 1959-72.
    Tansey, M.G., McCoy, M.K., Frank-Cannon, T.C., 2007. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 208, 1-25.
    Teive, H.A., 2009. Spinocerebellar ataxias. Arq Neuropsiquiatr. 67, 1133-42.
    Todd, T.W., Lim, J., 2013. Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cells. 36, 185-94.
    Toyoshima, Y., Yamada, M., Onodera, O., Shimohata, M., Inenaga, C., Fujita, N., Morita, M., Tsuji, S., Takahashi, H., 2004. SCA17 homozygote showing Huntington's disease-like phenotype. Ann Neurol. 55, 281-6.
    Tremblay, M.E., Cookson, M.R., Civiero, L., 2019. Glial phagocytic clearance in Parkinson's disease. Mol Neurodegener. 14, 16.
    Troy, C.M., Rabacchi, S.A., Xu, Z., Maroney, A.C., Connors, T.J., Shelanski, M.L., Greene, L.A., 2001. beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem. 77, 157-64.
    Timotius, I. K., Moceri, S., Plank, A.C., Habermeyer, J., Canneva, F., Winkler, J., Klucken, J., Casadei, N., Riess, O., Eskofier, B., von Hörsten, S., 2019. Silhouette-Length-Scaled Gait Parameters for Motor Functional Analysis in Mice and Rats. eNeuro, 6.
    van Rossum, D., Hanisch, U.K., 2004. Microglia. Metab Brain Dis. 19, 393-411.
    Vig, P.J., Hearst, S., Shao, Q., Lopez, M.E., Murphy, H.A., Safaya, E., 2011. Glial S100B protein modulates mutant ataxin-1 aggregation and toxicity: TRTK12 peptide, a potential candidate for SCA1 therapy. Cerebellum.10, 254-66. Villarreal, A., Seoane, R., Gonzalez Torres, A., Rosciszewski, G., Angelo, M.F., Rossi, A., Barker, P.A., Ramos, A.J., 2014. S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem. 131, 190-205.
    Wajant, H., 2002. The Fas signaling pathway: more than a paradigm. Science. 296, 1635-6.
    Wang, H., Chen, X., Li, Y., Tang, T.S., Bezprozvanny, I., 2010. Tetrabenazine is neuroprotective in Huntington's disease mice. Molecular neurodegeneration, 5, 18.
    Wang, X.H., Lu, G., Hu, X., Tsang, K.S., Kwong, W.H., Wu, F.X., et al., 2012. Quantitative assessment of gait and neurochemical correlation in a classical murine model of Parkinson's disease. BMC Neurosci. 13, 142
    Wei, W., Norton, D.D., Wang, X., Kusiak, J.W., 2002. Abeta 17-42 in Alzheimer's disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain. 125, 2036-43.
    Whaley, N.R., Fujioka, S., Wszolek, Z.K., 2011. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis. 6, 33.
    White, J.J., Sillitoe, R.V., 2013. Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdiscip Rev Dev Biol. 2, 149-64.
    White, J.J., Sillitoe, R.V., 2013. Postnatal development of cerebellar zones revealed by neurofilament heavy chain protein expression. Front Neuroanat. 7, 9.
    Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L., 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 79, 143-80.
    Wu, F., Wang, Z., Gu, J.H., Ge, J.B., Liang, Z.Q., Qin, Z.H., 2013. p38(MAPK)/p53-Mediated Bax induction contributes to neurons degeneration in rotenone-induced cellular and rat models of Parkinson's disease. Neurochem Int. 63, 133-40.
    Yang, H.M., Yang, S., Huang, S.S., Tang, B.S., Guo, J.F., 2017. Microglial Activation in the Pathogenesis of Huntington's Disease. Frontiers in aging neuroscience. 9, 193.
    Zhang, L., Zhang, J., Jiang, X., Yang, L., Zhang, Q., Wang, B., Cui, L., Wang, X., 2020.Hydroxytyrosol Inhibits LPS-Induced Neuroinflammatory Responses via Suppression of TLR-4-Mediated NF-kappaB P65 Activation and ERK Signaling Pathway. Neuroscience 426, 189-200.

    無法下載圖示 Public on Internet date:
    2025/09/17
    QR CODE