Basic Search / Detailed Display

Author: 黃薇
Thesis Title: 氧化鋅/硫化鋅核殼奈米結構之製備與特性分析
Preparation and Characterization of ZnO/ZnS Core-Shell Nanostructures
Advisor: 李敏鴻
Lee, Min-Hung
李粵堅
Lee, Yueh-Jian
Degree: 碩士
Master
Department: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
Thesis Publication Year: 2013
Academic Year: 101
Language: 中文
Number of pages: 92
Keywords (in Chinese): 微波輔助合成硫化鋅氧化鋅核殼結構
Keywords (in English): Microwave-assisted heating, ZnS, ZnO,, core-shell structure
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 187Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本論文使用微波輔助合成技術製備硫化鋅奈米球體、氧化鋅奈米柱與具陣列形貌的氧化鋅/硫化鋅核殼結構。我們先使用硫代乙醯胺分別與硫酸鋅和硝酸鋅作為前驅物,合成出硫化鋅奈米球體。再使用六亞甲基四胺個別與硫酸鋅和硝酸鋅反應,能分別合成出氧化鋅奈米柱與片狀結構。最後,我們先在矽基板上成長氧化鋅奈米柱陣列,再與硫代乙醯胺進行反應,成功製備出氧化鋅/硫化鋅核殼結構。我們進一步使用X光繞射光譜、掃描式電子顯微鏡與光激螢光光譜等實驗討論所製備氧化鋅/硫化鋅核殼結構的結構與光學特性。
    由X光繞射光譜可以發現氧化鋅/硫化鋅核殼結構會清楚呈現出屬於氧化鋅(002)的繞射訊號,隨著增加硫代乙醯胺的莫耳濃度,屬於硫化鋅(111)繞射峰訊號強度也會逐漸增加。由掃描式電子顯微鏡的結果,可以發現氧化鋅奈米柱核體會隨著硫代乙醯胺的莫耳濃度增加而變細且變短,而硫化鋅殼體的顆粒則會逐漸變大。由低溫光激螢光光譜圖中,可以觀察到氧化鋅/硫化鋅核殼結構的發光位置約為3.33 eV,是屬於氧化鋅的近帶能隙的放光機制。

    關鍵詞:微波輔助合成、硫化鋅、氧化鋅、核殼結構

    In this thesis, the zinc sulfide (ZnS) nanoball, zinc oxide (ZnO) nanorod and well-arrayed ZnO/ZnS core-shell structure were fabricated successfully by microwave-assisted heating. The ZnS nanoball can be prepared by using the hexamethylene triamine (HMT) with Zn(NO3)2‧6H2O) and (ZnSO4‧7H2O) as the precursors. The ZnO nanorod and nanosheet were synthesized by using the Thioacetamide (TAA) with Zn(NO3)2‧6H2O) and (ZnSO4‧7H2O), respectively. The well-arrayed ZnO nanorods grown on Si substrate were further interacted with TAA to form the ZnO/ZnS core-shell structure. We investigated the structure and optical properties of the ZnO/ZnS core-shell structure by X-ray diffraction (XRD), scanning electron microscope (SEM), and photoluminescence (PL) measurements.
    The XRD results indicated that the ZnO/ZnS core-shell structure can showed a significant ZnO (002) peak belonging to ZnO as well as a weak (111) peak from ZnS. It is noted that the (111) peak can be enhanced with increasing the molar ratio of TAA. SEM images show that the ZnO nanorod would be narrower and shorter but the ZnS would be larger as a function of the molar ratio of TAA. It is observed that the 12 K PL spectra of the ZnO/ZnS core-shell structure locate at about 3.33 eV, which can be attributed to the near-band-edge (NBE) of ZnO.

    Keywords: Microwave-assisted heating, ZnS, ZnO, core-shell structure

    中文摘要..................................................................................................Ⅰ 英文摘要..................................................................................................Ⅱ 誌謝. ...................................... ...................................... ......................... Ⅲ 目錄......................................................................................................... IV 圖目錄.................................................................................................. VIII 表目錄.....................................................................................................XI 第一章 緒論..............................................................................................1 1.1前言....................................................................................................1 1.2研究目的. ..........................................................................................2 1.3文獻回顧.............................................................................................5 第二章 材料簡介與實驗步驟 2.1. 硫化鋅(zinc sulfide).........................................................................8 2.2 氧化鋅(zinc oxide)............................................................................9 2.3 實驗步驟.........................................................................................11 2.3.1備製氧化鋅、氧化鋅及氧化鋅/硫化鋅 core-shell...... ..........11 第三章 實驗原理與量測系統 3.1微波輔助合成 (Microwave-assisted synthesis) ..... ........................15 3.2光激螢光(Photoluminescence:PL) 3.2.1光激螢光簡介..........................................................................16 3.2.2光激螢光原理..........................................................................17 3.2.3光激螢光實驗架構..................................................................19 3.3 拉曼光譜(Raman spectra) 3.3.1拉曼光譜簡介...........................................................................22 3.3.2 拉曼光譜原理..........................................................................23 3.4 X光繞射(X-ray Diffraction:XRD) 3.4.1 X光繞射簡介............................................................................25 3.4.2 X光繞射原理...........................................................................25 3.4.3 X光繞射實驗概述....................................................................26 3.5 傅立葉紅外光譜 (Fourier Transform Infrared Spectroscopy:FTIR)………………………………………………………………28 3.6 場發射式掃描電子顯微鏡(FE-SEM) …………………………...29 3.7 能量散佈光譜儀(EDS) …………………………………….…….33 第四章 結果與討論 4.1 前驅物 (Precursors)的選擇............................................................35 4.1.1 ZnS奈米結構體之製備....................... ....................................36 4.1.2硫化鋅奈米結構體之EDS分析...............................................38 4.1.3ZnO奈米結構體之製備............................................................40 4.1.4氧化鋅奈米結構體之EDS分析...............................................42 4.2 硫化鋅奈米結構體的備製與特性分析 4.2.1 硫化鋅奈米結構體的成長......................................................44 4.2.2 硫化鋅奈米結構體之XRD的分析........................................ 44 4.2.3 硫化鋅奈米結構體之FTIR的分析....................................... 47 4.2.4 硫化鋅奈米結構體之SEM的分析........................................48 4.2.5 硫化鋅奈米結構體之PL的分析............................................50 4.2.6 硫化鋅奈米結構體之Raman的分析......................................51 4.3 氧化鋅奈米結構的備製 4.3.1 氧化鋅奈米結構的種子層(ZnO seed layer) ............................52 4.3.2 成長氧化鋅奈米柱(ZnO nanorods) .........................................52 4.3.3 氧化鋅奈米柱之XRD分析.......................................................53 4.3.4 氧化鋅奈米柱之SEM分析......................................................56 4.3.5 氧化鋅奈米柱之Raman光譜分析...........................................63 4.3.6 氧化鋅奈米柱之PL光譜分析..................................................64 4.4 氧化鋅/硫化鋅核殼(core-shell)結構之製備與特性分析 4.4.1 備製氧化鋅/硫化鋅核殼結構之製備流程...............................66 4.4.2 氧化鋅/硫化鋅核殼結構之SEM分析.....................................67 4.4.3 氧化鋅/硫化鋅核殼結構之XRD分析.....................................70 4.4.4氧化鋅/硫化鋅核殼結構之PL光譜分析.................................72 第五章 結論.........................................................................................74 參考文獻.................................................................................................76

    [1] 蔡宏營,奈米科技概論與應用,五南圖書出版股份有限公司,2013,第114頁。
    [2] L. J. Zhao, D. Meng, X. Zhang, Z. Zhang, J. Shen, “Enhanced Ultraviolet Emission from ZnS-Coated ZnO Nanowires Fabricated by Self-Assembling Method”, Journal of Physical Chemistry B 30 (2006)14685.
    [3] Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures” , Nature 430 (2004) 61.
    [4] E. E. Carpenter, J. A. Sims, J. A. Wienmann, W. L. Zhou, C. J. Oconnor, “Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques”, Journal of Applied physics 87 (2000) 5615.
    [5] C. M. Lieber, “Nanoscals science and technology: building a big future from small things”, MRS Bulletin 28 (2003) 486.
    [6] J. Schrier, D. O. Demchenko, L. W. Wang, A. P. Alivisatos, “Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications”, Nano letters 7 (2007) 2377.
    [7] X. L. Yu, J. G. Song, Y. S. Fu, Y. Xie, X. Song, J. Sun, X. W. Du, “ZnS/ZnO heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells”, The Journal of Physical Chemistry C 114 (2010) 2380.

    [8] X. M. Shuai, W. Z. Shen, “A facile chemical conversion synthesis of ZnO/ZnS core/shell nanorods and diverse metal sulfide nanotubes”, The Journal of Physical Chemistry C 115 (2011) 6415.
    [9] S. K. Panda, A. Dev, S. Chaudhuri, “Fabrication and luminescent properties of c-axis oriented ZnO-ZnS core-shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays”, The Journal of Physical Chemistry C 111 (2007) 5039.
    [10] M. Cheng, K. F. Lin, H. C. Hsu, C. J. Lin, L. J. Lin, W. F. Hsieh, “Enhanced resonant Raman scattering and electron-phonon coupling from self-assembled secondary ZnO nanoparticles”, The Journal of Physical Chemistry B 109 (2005) 18385.
    [11] G. Clavel, M. G. Willinger, D. Zitoun, N. Pinna, “Solvent dependent shape and magnetic properties of doped ZnO nanostructures”, Advanced Functional Materials 17 (2007) 3159.
    [12] B. M. Wen, Y. Z. Huang, J. J. Boland, “Controllable growth of ZnO nanostructures by a simple solvothermal process”, The Journal of Physical Chemistry C 112 (2008) 106.
    [13] Y. Li, Z. Zhou, P. Jin, Y. Chen, S. B. Zhang, Z. Chen, “Achieving ferromagnetism in single-crystalline ZnS wurtzite nanowires via chromium doping”, Journal of Physical Chemistry C 114(2010) 12099.
    [14] M. Lin, T. Sudhiranjan, C. Boothroyd, K. P. Loh, “Influence of Au catalyst on the growth of ZnS nanowires”, Chemical Physics Letters 400(2004) 175.
    [15] H. Zhang, L. Qi, “Low-temperature, template-free synthesis of wurtzite ZnS nanostructures with hierarchical architectures”, Nanotechnology 17( 2006) 3984.
    [16] X. Fang, L. Wu, L. Hu, “ZnS nanostructure arrays: a developing material star”, Advanced Materials 23( 2011) 585.
    [17] N. I. Kovtyukhova, E. V. Buzaneva, C. C. Waraksa, T. E. Mallouk, “Ultrathin Nanoparticle ZnS and ZnS:Mn Films: Surface Sol-Gel Synthesis, Morphology, Photophysical Properties”, Materials Science and Engineering B 69 (2000) 411.
    [18] Q. Zhao, L. Hou, R. Huang, “Synthesis of ZnS nanorods by a surfactant-assisted soft chemistry method”, Inorganic Chemistry Communications 6 (2011) 971.
    [19] Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng, “Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires”, Chemical Physics Letters 357 (2002) 314.
    [20] Y. Zhao, J. M. Hong, J. J. Zhu, “Microwave-assisted self-assembled ZnS nanoballs”, Journal of Crystal Growth 270 (2004) 438.
    [21] Y. C. Lee, C. S. Yang, H. J. Huang, S. Y. Hu, J. W. Lee, C. F. Cheng, H. C. Kuang, “Structural and optical properties of ZnO nanopowder prepared by microwave-assisted synthesis”, Journal of Luminescence 130 (2010) 1756.
    [22] 余樹楨,晶體之結構與性質,渤海堂文化事業有限公司,1987,第255頁。
    [23] 蔡信行、孫光中,新文京開發出版股份有限公司,2004,第152頁。
    [24] J. Zheng, H.Yu, X. Li, S. Zhang, “Enhanced photocatalytic acticity of TiO2 nano-structured thin film with a silver hierarchical configuration”, Applied Surface Science 254 (2008) 1630.
    [25] B. Yao, L. X. Guan, G. Z. Xing, Z. Z. Zhang, B. H. Li, Z. P. Wei, D. Z. Shen, “P-type conductivity and stability of nitrogen-doped zinc oxide prepared by magnetron sputtering”, Journal of luminescence 122(2007) 191.
    [26] J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations”, Materials Letters 57 (2003) 3311.
    [27] X. B. Zhang, Z. L. Pei, J. Gong, C. Sun, “Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputteting at low deposition temperature”, Journal of Applied physics 101 (2007) 014910.
    [28] E. T. Thostenson, T. W. Chou, “Microwave processing: fundamentals and applications”, Composites Part A: Applied Science and Manufacturing 30 (1999) 1055.
    [29] M. Kuppayee, G. K. Vanathi Nachiyar, V. Ramasamy, “Synthesis and characterization of Cu2+ doped ZnS nanoparticles using TOPO and SHMP as capping agents”, Applied Surface Science 257 (2011) 6779.
    [30] S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, “Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder”, Solid State Sciences 14 (2012) 299.
    [31] M. K. Mekki Berrada, F. Gruy, M. Cournil, “Synthesis of zinc sulfide multi-scale agglomerates by homogeneous precipitation–parametric study and mechanism”, Journal of Crystal Growth 311(2009) 2459.
    [32] Y. Wang, L. Zhang, C. Liang, G. Wang, X. Peng, “ Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires”, Chemical Physics Letters 357 ( 2002) 314.
    [33] T. Youngjo, K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method”, The Journal of Physical Chemistry B 109 (2005) 19263.
    [34] M. Wang, C. H. Ye, Y. Zhang, G. M. Hua, H. X. Wang, M. G. Kong, L. D. Zhang, “Synthesis of well-aligned ZnO nanorod arrays with high optical property via a low-temperature solution method” , Journal of Crystal Growth 291 (2006) 334.
    [35] M. K. Tsai, C. C. Huang, Y. C. Lee, C. S. Yang, H. C. Yu, J. W. Lee, C. H. Chen, “A study on morphology control and optical properties of ZnO nanorods synthesized by microwave heating”, Journal of luminescence 132 (2012) 226.
    [36] H. Yong, H. Qian, Y. Liu, G. Du, F. Zhang, L.Wang, X.Hu, “A microwave-assisted rapid route to synthesize ZnO/ZnS core–shell nanostructures via controllable surface sulfidation of ZnO nanorods” , Cryst Eng Comm 13 (2011) 3438.

    無法下載圖示 This full text is not authorized to be published.
    QR CODE