Basic Search / Detailed Display

Author: 林子洋
Lin, Zi-Yang
Thesis Title: 利用一價銠金屬催化芳基硼酸對3號位具酯基之香豆素化合物進行不對稱1,4-加成反應
Enantioselective 1,4-Arylation of Coumarin-3-carboxylic Esters Using Rh(І)/Diene Catalysts
Advisor: 吳學亮
Wu, Hsyueh-Liang
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2020
Academic Year: 108
Language: 中文
Number of pages: 193
Keywords (in Chinese): 銠金屬催化掌性雙烯配基1,4-加成反應
Keywords (in English): Rh(Ⅰ)-catalyst, chiral diene ligand, 1,4-addition reaction
DOI URL: http://doi.org/10.6345/NTNU202001313
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 154Downloads: 12
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 摘要
    本論文敘述利用掌性雙環 [2.2.1] 雙烯配體L5a與一價銠金屬形成之催化劑催化芳基硼酸7與三號位具酯基取代之香豆素化合物24進行不對稱1,4-加成反應。此加成反應產生9−99%產率,鏡像超越值7−99%的加成產物25。此方法可以用於合成抗利尿藥物 (R)–Tolterodine (14)

    Abstract
    This thesis describes an asymmetric 1,4-conjugated addition reaction of arylboronic acids 7 to various coumarin-3-carboxylic esters 24 in the presence of 3.0 mol % Rh(Ⅰ)-catalyst consisting of chiral diene ligand L5a, affording adducts 25 in up to 99% yield, d.r > 20:1 and 99% ee. This asymmetric transformation demonstrates its usefulness in the synthesis of an anti-diuretic drug, (R)–Tolterodine (14)

    目錄 謝詞 i 摘要 ii Abstract iii 圖目錄 vi 表目錄 viii 縮寫對照表 ix 第一章 緒論 1 第二章 文獻回顧 7 第三章 實驗設計與概念 19 3-1 掌性雙烯配基的合成 19 3-2起始物的合成 21 第四章 實驗結果與討論 22 4-1溫度效應 22 4-2溶劑效應 23 4-3 添加劑種類效應 24 4-4 添加劑濃度效應 26 4-5配基效應-I 28 4-6 配基效應-II 30 4-7 基質效應 30 4-8不同官能基起始物25與苯基硼酸7a的反應結果 34 第五章 立體化學之探討 37 第六章 合成應用 40 6-1 合成應用設計理念 40 6-2 合成(R)-Tolterodine藥物 40 6-3 比較李韋賢博士的實驗結果 45 第七章 結論 46 第八章 文獻參考 47 第九章 實驗部分 50 附錄一 X-ray單晶數據與ORTEP解析圖譜 110 附錄二 核磁共振光譜圖 119

    1. (a) Flack, H.-D. Acta Cryst. 2009. 65, 371–389. (b) Kauffman, G.-B.; Myers, R.-D. J. Chem. Educ., 1975, 52, 777−781. (c) Yoshito, T. Mendeleev Commun. 2003, 13, 93–94.
    2. Rundlett, K.-L.; Armstrong, D. W. Chirality 1994, 6, 277–282.
    3. Fahlbusch, K.-G.; Hammerschmidt, F.-J.; Panten, J; Pickenhagen, W.; Schatkowski, D.; Bauer, K.; Garbe, D.; Surburg, H. F.; fragrances. In Ullmann's encyclopedia of industrial chemistry; Wiley-VCH: Weinheim, Germany, 2003.
    4. (a) Frank, M.-E.; Macpherson, G.-R.; Figg, W.-D. The Lancet, 2004, 363, 1802–1811. (b) Moghe, V.-K.; Kulkarni, U.; Parmar, U.-I. Bombay Hosp. J. 1982, 3, 241–263.
    5. Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829–2844.
    6. Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579–5580.
    7. Hayashi, T.; Tokunaga, N.; Yoshida, K.; Han, J.-W. J. Am. Chem. Soc. 2002, 124, 5052–5058.
    8. Itooka, R.; Iguchi, Y.; Miyaura, N. J. Org. Chem. 2003, 68, 6000–6004.
    9. Defieber, C.; Paquin, J. F.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6, 3873–3876.
    10. Chen, G.; Tokunaga, N.; Hayashi, T. Org. Lett. 2005, 7, 2285–2288.
    11. Mino, T.; Miura, K.; Taguchi, H.; Watanabe, K.; Sakamo, M. Tetrahedron Asymmetry. 2015, 26, 1065–1068.
    12. Mino, T.; Watanabe ,K.; Akiyama, T.; Mizutani, Y.; Miur, K.; Hashimoto, M.; Yoshida , Y.; Sakamoto, M. Tetrahedron. 2018, 74, 3871–3878.
    13. Korenaga, T.; Maenishi, R.; Osaki, K.; Sakai, T. Heterocycles, 2010, 80, 157–162.
    14. Korenaga, T.; Sasaki, R.; Takemoto, T.; Yasuda, T.; Watanabe, M. Adv. Synth. Catal. 2018, 360, 322–333.
    15. So, C.-M.; Kume, S.; Hayashi, T. J. Am. Chem. Soc. 2013, 135, 10990–10993.
    16. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409.
    17. Vekariya, R. H.; Patel, H. D. Synth. Commun. 2014, 44, 2756–2788.
    18. Yao, D.; Wang, J.; Wang, G.; Jiang, Y.; Shang, L.; Zhao, Y.; Huang, J.; Yang, S.; Wang, J.; Yu, Y. Bioorg. Chem. 2016, 68, 112–123.
    19. Awasthi, A. K.; Tewari, R. S. Synthesis, 1986, 12, 1061–1062.
    20. Katsori, A. M.; Hadjipavlou-Litina, D. Expert Opin. Ther. Patents, 2014, 24, 1323–1347.
    21. Kang, J.-H.; Lee, J.-H.; Park, Y.-J.; Kim, K.-S.; Lee, J.-Y. Bull. Korean Chem. Soc. 2008, 29, 519–520.
    22. Renuka, J.; Reddy, K. I.; Srihari, K.; Jeankumar, V. U.; Shravan, M.; Sridevi, J. P.; Yogeeswari, P.; Babu, K. S.; Sriram, D. Bioorg. Med. Chem. 2014, 22, 4924–4934.
    23. Martínez-Martínez, F. J.; Razo-Hernández, R. S.; Peraza-Campos A. L.; Villanueva-García, M.; Sumaya-Martínez, M. T.; Cano, D. J.; Gómez-Sandoval, Z. Molecules. 2012, 17, 14882–14898.
    24. Prashanth, T.; Vijay Avin, B. R.; Thirusangu, P.; Ranganatha, V. L.; Prabhakar, B. T.; Narendra Sharath Chandra, J. N.; Khanum, S. A. Biomed. Pharmacother. 2019, 112, 108707.
    25. Rao, K. S.; Rao, K. N.; krishna, P. M.; Jayashree, A. Asian J. Chem, 2014, 26, 2813–2814.
    26. Gallagher, B. D.; Taft, B. R.; Lipshutz, B. H. Org. Lett. 2009, 11, 5374–5377.
    27. De Castro, K. A.; Ko, J.; Park, D.; Park, S.; Rhee, H. Org Process Res Dev. 2007, 11, 918–921.
    28. Ulgheri, F.; Marchetti, M.; Piccolo, O. J. Org. Chem, 2007, 72, 6056–6059.

    下載圖示
    QR CODE