Author: |
詹紫涵 Chan, Tzu-Han |
---|---|
Thesis Title: |
支鏈胺基酸增補對下坡跑後肌肉生長抑制激素-myostatin及肌肉損傷與發炎指標之影響 Effects of Supplementation of Branched Chain Amino Acids on Myostatin and Muscle Injury and Inflammation Biomarkers following Downhill Running |
Advisor: |
王鶴森
Wang, Ho-Seng 陳勇志 Chen, Yung-Chih |
Committee: |
王鶴森
Wang, Ho-Seng 陳勇志 Chen, Yung-Chih 陳厚諭 Chen, Hou-Yu |
Approval Date: | 2021/10/29 |
Degree: |
碩士 Master |
Department: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
Thesis Publication Year: | 2024 |
Academic Year: | 112 |
Language: | 中文 |
Number of pages: | 54 |
Keywords (in Chinese): | GDF-8 、增補劑 、肌少症 、肌肥大 |
Keywords (in English): | GDF-8, energetic aid, sarcopenia, muscle hypertrophy |
Research Methods: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401519 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 124 Downloads: 5 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
研究背景:肌肉生長抑制激素 (myostatin, MSTN) 是肌肉生長的負調控因子,而運動誘發肌肉損傷 (exercise-induced muscle damage, EIMD),會引起 MSTN 濃度的改變。過去研究指出增補支鏈胺基酸 (branched-chain amino acids, BCAA) 似乎能夠減緩EIMD,但對於 MSTN 的影響仍不清楚。本研究目的為探討增補 BCAA 在單次激烈運動過後對 MSTN 及肌肉損傷及發炎指標之影響。方法:13位健康男性 (23.6 ± 4.8歲) 依照平衡次序法接受 BCAA + 下坡跑 (BCAA) 或安慰劑 + 下坡跑 (PLA) 處理。增補時間點共三次,分別為運動前15分鐘、運動後立即與運動後3小時,受試者每次增補劑量為100 mg/kg。於增補前 (pre)、運動後立即 (0 h)、運動後3小時 (3 h)、運動後24小時 (24 h)、運動後48小時 (48 h) 五個時間點,測量血漿 MSTN、血清介白素6 (interleukin 6, IL-6)、血清肌酸激酶 (creatine kinase, CK)、延遲性肌肉痠痛 (delayed-onset muscle soreness, DOMS) ,及最大等長肌力 (maximum voluntary isometric contraction, MVIC) 五個指標。所得數據以重複量數二因子變異數分析進行統計處理以及皮爾森積差相關進行分析。結果:MSTN變化率有交互作用 (p=.046),BCAA以及PLA處理在0 h與3 h顯著高於pre,BCAA 處理 48 h 顯著高於 24 h;PLA 處理 48 h 顯著低於 0 h、3 h。IL-6無交互作用,0 h 顯著高於 pre,3 h 顯著高於其餘四時間點。DOMS 有交互作用 (p=.012),在 3 h 及 24h,BCAA 顯著低於 PLA 處理。CK 以及 MVIC 無交互作用,後測四個時間點與 pre 達顯著。MSTN 與 CK、IL-6 在 0 h 與 3 h 分別呈現中度正相關。結論:本研究發現 MSTN 會在單次激烈運動後立即上升,並且與 IL-6、CK 等指標呈現正相關,推測 EIMD 會短暫造成 MSTN 上升,且增補 BCAA 並不會抑制此現象,但會暫時減緩 DOMS 的發生。
Background: Myostatin (MSTN) is the negative signalling factor for muscle growth. Exercise-induced muscle damage (EIMD) would alter MSTN levels. Previous studies had indicated branched-chain amino acids (BCAA) supplementation might alleviate EIMD, but the effect on MSTN remains unclear. This study aims to investigate the effects of BCAA supplementation on MSTN and muscle damage indicators following a single bout of intense exercise. Methods: Thirteen healthy males (aged 23.6 ± 4.8 years) receiving either BCAA with downhill running (BCAA) or placebo with downhill running (PLA) with a randomized, counterbalanced design. Participants were all supplemented with 100 mg/kg of BCAA/PLA at 15 min before exercise, immediately after exercise and 3 h after exercise. Plasma MSTN, serum interleukin 6 (IL-6), serum creatine kinase (CK), delayed-onset muscle soreness (DOMS), and maximum voluntary isometric contraction (MVIC) were measured at five time points: pre-supplementation (pre), immediately after exercise (0 h), 3 hours post-exercise (3 h), 24 hours post-exercise (24 h), and 48 hours post-exercise (48 h). Data were analysed using two-way ANOVA repeated measure and Pearson correlation of statistical analysis. Results: There was a significant interaction effect on MSTN levels (p=.046). In the BCAA treatment, MSTN levels were significantly higher at 0 h and 3 h compared to pre-exercise, and at 48 h compared to 24 h. In the PLA treatment, MSTN levels were significantly higher at 0 h and 3 h compared to pre-exercise, and significantly lower at 48 h compared to 0 h and 3 h. IL-6 showed no interaction effect but was significantly higher at 0 h compared to pre-exercise, and at 3 h compared to the other time points. CK showed no interaction effect but was significantly higher at 0 h, 3 h, 24 h, and 48 h compared to pre-exercise, with 3 h and 24 h significantly higher than 0 h, and 24 h significantly higher than 3 h and 48 h. DOMS showed a significant interaction effect (p=.012), with BCAA significantly lower than PLA at 3 h and 24 h. MSTN was positively correlated with CK and IL-6 at 0 h and 3 h. Conclusion: This study found MSTN levels increased after a single bout of intense exercise and positively correlated with IL-6 and CK. It is suggested that EIMD temporarily increased MSTN levels, and BCAA supplementation did not inhibit this increase but temporarily alleviated DOMS.
Abati, E., Manini, A., Comi, G. P., & Corti, S. (2022). Inhibition of myostatin and related signaling pathways for the treatment of muscle atrophy in motor neuron diseases. Cellular and molecular life sciences, 79(7), 374.
Al-Khalili, L., Bouzakri, K., Glund, S., Lönnqvist, F., Koistinen, H. A., & Krook, A. (2006). Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Molecular Endocrinology, 20(12), 3364-3375.
Arroyo-Cerezo, A., Cerrillo, I., Ortega, Á., & Fernández-Pachón, M. S. (2021). Intake of branched chain amino acids favors post-exercise muscle recovery and may improve muscle function: optimal dosage regimens and consumption conditions. Journal of Sports Medicine and Physical Fitness, 61(11), 1478-1489. https://doi.org/10.23736/s0022-4707.21.11843-2
Bagheri, R., Moghadam, B. H., Church, D. D., Tinsley, G. M., Eskandari, M., Moghadam, B. H., Motevalli, M. S., Baker, J. S., Robergs, R. A., & Wong, A. (2020). The effects of concurrent training order on body composition and serum concentrations of follistatin, myostatin and GDF11 in sarcopenic elderly men. Experimental gerontology, 133, 110869. https://doi.org/10.1016/j.exger.2020.110869
Bizjak, D. A., Zügel, M., Treff, G., Winkert, K., Jerg, A., Hudemann, J., Mooren, F. C., Krüger, K., Nieß, A., & Steinacker, J. M. (2021). Effects of Training Status and Exercise Mode on Global Gene Expression in Skeletal Muscle. International Journal of Molecular Sciences, 22(22), 12578. https://www.mdpi.com/1422-0067/22/22/12578
Blomstrand, E., Celsing, F., & Newsholme, E. A. (1988). Changes in plasma concentrations of aromatic and branched-chain amino acids during sustained exercise in man and their possible role in fatigue. Acta Physiologica Scandinavica, 133(1), 115-121.https://doi.org/10.1111/j.1748-1716.1988.tb08388.x
Blomstrand, E., Hassmén, P., Ek, S., Ekblom, B., & Newsholme, E. (1997). Influence of ingesting a solution of branched‐chain amino acids on perceived exertion during exercise. Acta Physiologica Scandinavica, 159(1), 41-49.
Bogdanovich, S., Krag, T. O. B., Barton, E. R., Morris, L. D., Whittemore, L.-A., Ahima, R. S., & Khurana, T. S. (2002). Functional improvement of dystrophic muscle by myostatin blockade. Nature, 420(6914), 418-421. https://doi.org/10.1038/nature01154
Borgenvik, M., Apró, W., & Blomstrand, E. (2012). Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. American Journal of Physiology-Endocrinology and Metabolism, 302(5), E510-521. https://doi.org/10.1152/ajpendo.00353.2011
Buczek, F. L., & Cavanagh, P. R. J. M. S. S. E. (1990). Stance phase knee and ankle kinematics and kinetics during level and downhill running. Medicine & Science in Sports & Exercise, 22(5), 669-677.
Carlson, C. J., Booth, F. W., & Gordon, S. E. (1999). Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. American Journal of Physiology, 277(2 Pt 2), R601-606.https://doi.org/10.1152/ajpregu.1999.277.2.r601
Chang, Y.-H., Tsai, J.-N., Chen, T.-L., Ho, K.-T., Cheng, H.-Y., Hsiao, C.-W., & Shiau, M.-Y. (2019). Interleukin-4 promotes myogenesis and boosts myocyte insulin efficacy. Mediators of inflammation, 2019.
Chen, T. C., Huang, G.-L., Hsieh, C.-C., Tseng, K.-W., Tseng, W.-C., Chou, T.-Y., & Nosaka, K. (2020). Comparison among three different intensities of eccentric contractions of the elbow flexors resulting in the same strength loss at one day post-exercise for changes in indirect muscle damage markers. European journal of applied physiology, 120, 267-279.
Chen, T. C., Lin, K.-Y., Chen, H.-L., Lin, M.-J., & Nosaka, K. (2011). Comparison in eccentric exercise-induced muscle damage among four limb muscles. European journal of applied physiology, 111, 211-223.
Close, G. L., Ashton, T., Cable, T., Doran, D., Holloway, C., McArdle, F., & MacLaren, D. P. J. B. J. o. N. (2006). Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. British Journal of Nutrition, 95(5), 976-981.
Connolly, P. H., Caiozzo, V. J., Zaldivar, F., Nemet, D., Larson, J., Hung, S.-p., Heck, J. D., Hatfield, G. W., & Cooper, D. M. (2004). Effects of exercise on gene expression in human peripheral blood mononuclear cells. Journal of Applied Physiology, 97(4), 1461-1469.
Costa, A., Dalloul, H., Hegyesi, H., Apor, P., Csende, Z., Racz, L., Vaczi, M., & Tihanyi, J. (2007). Impact of repeated bouts of eccentric exercise on myogenic gene expression. European Journal of Applied Physiology, 101(4), 427-436.https://doi.org/10.1007/s00421-007-0510-z
Croisier, J. L., Camus, G., Venneman, I., Deby‐Dupont, G., Juchmes‐Ferir, A., Lamy, M., Crielaard, J. M., Deby, C., & Duchateau, J. (1999). Effects of training on exercise‐induced muscle damage and interleukin 6 production. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 22(2), 208-212.
Crowe, M. J., Weatherson, J. N., & Bowden, B. F. (2006). Effects of dietary leucine supplementation on exercise performance. European journal of applied physiology, 97, 664-672.
da Rocha, A. L., Pereira, B. C., Pauli, J. R., de Souza, C. T., Teixeira, G. R., Lira, F. S., Cintra, D. E., Ropelle, E. R., Júnior, C. R., & da Silva, A. S. (2016). Downhill Running Excessive Training Inhibits Hypertrophy in Mice Skeletal Muscles with Different Fiber Type Composition. Journal of Cellular Physiology, 231(5), 1045-1056.https://doi.org/10.1002/jcp.25197
Davis, M. H., Cappel, R., Vester, J. W., Samaha, F. J., & Gruenstein, E. (1982). Creatine kinase activity in normal and Duchenne muscular dystrophy fibroblasts. Muscle Nerve, 5(1), 1-6. https://doi.org/10.1002/mus.880050102
Dehn, M. M., & Bruce, R. A. (1972). Longitudinal variations in maximal oxygen intake with age and activity. Journal of Applied Physiology, 33(6), 805-807.
Dill, D. B., & Costill, D. L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247-248.
Doma, K., Singh, U., Boullosa, D., & Connor, J. D. (2021). The effect of branched-chain amino acid on muscle damage markers and performance following strenuous exercise: A systematic review and meta-analysis. Applied Physiology, Nutrition, and Metabolism, 46(11), 1303-1313.
Domin, R., Dadej, D., Pytka, M., Zybek-Kocik, A., Ruchała, M., & Guzik, P. (2021). Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. International Journal of Environmental Research and Public Health, 18(3), 1261. https://www.mdpi.com/1660-4601/18/3/1261
Drummond, M. J., Glynn, E. L., Fry, C. S., Dhanani, S., Volpi, E., & Rasmussen, B. B. (2009). Essential amino acids increase microRNA-499,-208b, and-23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle. The Journal of nutrition, 139(12), 2279-2284.
Drummond, M. J., Miyazaki, M., Dreyer, H. C., Pennings, B., Dhanani, S., Volpi, E., Esser, K. A., & Rasmussen, B. B. (2009). Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. Journal of Applied Physiology, 106(4), 1403-1411.https://doi.org/10.1152/japplphysiol.90842.2008
Egan, B., & Zierath, Juleen R. (2013). Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metabolism, 17(2), 162-184.https://doi.org/https://doi.org/10.1016/j.cmet.2012.12.012
Eston, R. G., Mickleborough, J., & Baltzopoulos, V. (1995). Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running. British journal of sports medicine, 29(2), 89-94.
Féasson, L., Stockholm, D., Freyssenet, D., Richard, I., Duguez, S., Beckmann, J. S., & Denis, C. (2002). Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. The Journal of Physiology, 543(1), 297-306. https://doi.org/https://doi.org/10.1113/jphysiol.2002.018689
Fedewa, M. V., Spencer, S. O., Williams, T. D., Becker, Z. E., & Fuqua, C. A. (2019). Effect of branched-Chain Amino Acid Supplementation on Muscle Soreness following Exercise: A Meta-Analysis. International Journal for Vitamin and Nutrition Research, 89(5-6), 348-356. https://doi.org/10.1024/0300-9831/a000543
Fouré, A., & Bendahan, D. (2017). Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review. Nutrients, 9(10). https://doi.org/10.3390/nu9101047
Fouré, A., & Bendahan, D. (2017). Is branched-chain amino acids supplementation an efficient nutritional strategy to alleviate skeletal muscle damage? A systematic review. Nutrients, 9(10), 1047.
Gervasi, M., Sisti, D., Amatori, S., Donati Zeppa, S., Annibalini, G., Piccoli, G., Vallorani, L., Benelli, P., Rocchi, M. B. L., Barbieri, E., Calavalle, A. R., Agostini, D., Fimognari, C., Stocchi, V., & Sestili, P. (2020). Effects of a commercially available branched-chain amino acid-alanine-carbohydrate-based sports supplement on perceived exertion and performance in high intensity endurance cycling tests. Journal of the International Society of Sports Nutrition, 17(1), 6. https://doi.org/10.1186/s12970-020-0337-0
Gibala, M. J. (2007). Protein metabolism and endurance exercise. Sports medicine, 37, 337-340.
Glass, S., Dwyer, G. B., & ACSM, A. C. o. S. M. (2007). ACSM's metabolic calculations handbook. Lippincott Williams & Wilkins.
Grobet, L., Royo Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Ménissier, F., Massabanda, J., Fries, R., Hanset, R., & Georges, M. (1997). A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle. Nature Genetics, 17(1), 71-74. https://doi.org/10.1038/ng0997-71
Guernec, A., Chevalier, B., & Duclos, M. J. (2004). Nutrient supply enhances both IGF-I and MSTN mRNA levels in chicken skeletal muscle. Domestic Animal Endocrinology, 26(2), 143-154.
Harber, M. P., Crane, J. D., Dickinson, J. M., Jemiolo, B., Raue, U., Trappe, T. A., & Trappe, S. W. (2009). Protein synthesis and the expression of growth-related genes are altered by running in human vastus lateralis and soleus muscles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(3), R708-R714.https://doi.org/10.1152/ajpregu.90906.2008
He, Z., Tian, Y., Valenzuela, P. L., Huang, C., Zhao, J., Hong, P., He, Z., Yin, S., & Lucia, A. (2018). Myokine Response to High-Intensity Interval vs. Resistance Exercise: An Individual Approach. Frontiers in Physiology, 9, 1735.https://doi.org/10.3389/fphys.2018.01735
He, Z., Tian, Y., Valenzuela, P. L., Huang, C., Zhao, J., Hong, P., He, Z., Yin, S., & Lucia, A. (2019). Myokine/Adipokine Response to “Aerobic” Exercise: Is It Just a Matter of Exercise Load?. Frontiers in Physiology, 10(691).https://doi.org/10.3389/fphys.2019.00691
Heinemeier, K. M., Olesen, J. L., Schjerling, P., Haddad, F., Langberg, H., Baldwin, K. M., & Kjaer, M. (2007). Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. Journal of Applied Physiology, 102(2), 573-581.https://doi.org/10.1152/japplphysiol.00866.2006
Hennigar, S. R., McClung, J. P., & Pasiakos, S. M. (2017). Nutritional interventions and the IL-6 response to exercise. The FASEB Journal, 31(9), 3719-3728.https://doi.org/https://doi.org/10.1096/fj.201700080R
Hill, J. J., Davies, M. V., Pearson, A. A., Wang, J. H., Hewick, R. M., Wolfman, N. M., & Qiu, Y. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. Journal of Biological Chemistry, 277(43), 40735-40741.
Hirano, T. (1998). Interleukin 6 and its receptor: ten years later. International Reviews of Immunology, 16(3-4), 249-284.
Hittel, D. S., Axelson, M., Sarna, N., Shearer, J., Huffman, K. M., & Kraus, W. E. (2010). Myostatin decreases with aerobic exercise and associates with insulin resistance. Medicine and science in sports and exercise, 42(11), 2023.
Howatson, G., Hoad, M., Goodall, S., Tallent, J., Bell, P. G., & French, D. N. (2012). Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. Journal of the International Society of Sports Nutrition, 9(1), 20. https://doi.org/10.1186/1550-2783-9-20
Howatson, G., Hough, P., Pattison, J., Hill, J. A., Blagrove, R., Glaister, M., Thompson, K. G. J. M., Sports, S. i., & Exercise. (2011). Trekking poles reduce exercise-induced muscle injury during mountain walking. Medicine & Science in Sports & Exercise, 43(1), 140-145.
Howatson, G., McHugh, M. P., Hill, J., Brouner, J., Jewell, A., Van Someren, K. A., Shave, R., Howatson, S. J. S. j. o. m., & sports, s. i. (2010). Influence of tart cherry juice on indices of recovery following marathon running. Scandinavian Journal of Medicine & Science in Sports, 20(6), 843-852.
Howatson, G., & Van Someren, K. A. J. S. m. (2008). The prevention and treatment of exercise-induced muscle damage. Sports Medicine, 38(6), 483-503.
Höglund, E., Øverli, Ø., & Winberg, S. (2019). Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Frontiers in Endocrinology, 10, 158. https://doi.org/10.3389/fendo.2019.00158
Hulmi, J. J., Kovanen, V., Lisko, I., Selänne, H., & Mero, A. A. (2008). The effects of whey protein on myostatin and cell cycle-related gene expression responses to a single heavy resistance exercise bout in trained older men. European Journal of Applied Physiology, 102(2), 205-213. https://doi.org/10.1007/s00421-007-0579-4
Jenkins, T. A., Nguyen, J. C., Polglaze, K. E., & Bertrand, P. P. (2016). Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients, 8(1), 56. https://doi.org/10.3390/nu8010056
Joe, A. W., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., Rudnicki, M. A., & Rossi, F. M. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology, 12(2), 153-163.
Kazemi, F. (2016). The correlation of resistance exercise-induced myostatin with insulin resistance and plasma cytokines in healthy young men. Journal of Endocrinological Investigation, 39(4), 383-388. https://doi.org/10.1007/s40618-015-0373-9
Khemtong, C., Kuo, C.-H., Chen, C.-Y., Jaime, S. J., & Condello, G. (2021). Does branched-chain amino acids (BCAAs) supplementation attenuate muscle damage markers and soreness after resistance exercise in trained males? A meta-analysis of randomized controlled trials. Nutrients, 13(6), 1880.
Kim, J.-s., Cross, J. M., & Bamman, M. M. (2005). Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. American Journal of Physiology-Endocrinology and Metabolism, 288(6), E1110-E1119. https://doi.org/10.1152/ajpendo.00464.2004
Kim, J. H., Bachmann, R. A., & Chen, J. (2009). Interleukin‐6 and insulin resistance. Vitamins & Hormones, 80, 613-633.
Kistner, T. M., Pedersen, B. K., & Lieberman, D. E. (2022). Interleukin 6 as an energy allocator in muscle tissue. Nature Metabolism, 4(2), 170-179.
Konopka, A. R., Wolff, C. A., Suer, M. K., & Harber, M. P. (2018). Relationship between intermuscular adipose tissue infiltration and myostatin before and after aerobic exercise training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 315(3), R461-R468.
Lanier, A. B. J. S. M. (2003). Use of nonsteroidal anti-inflammatory drugs following exercise-induced muscle injury. Sports Medicine, 33(3), 177-186.
Lee, S. J., & McPherron, A. C. (2001). Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences, 98(16), 9306-9311.https://doi.org/10.1073/pnas.151270098
Leeder, J., Gissane, C., van Someren, K., Gregson, W., & Howatson, G. J. B. J. S. M. (2012). Cold water immersion and recovery from strenuous exercise: a meta-analysis. British Journal of Sports Medicine, 46(4), 233-240.
Li, R., Ferreira, M. P., Cooke, M. B., La Bounty, P., Campbell, B., Greenwood, M., Willoughby, D. S., & Kreider, R. B. (2015). Co-ingestion of carbohydrate with branched-chain amino acids or L-leucine does not preferentially increase serum IGF-1 and expression of myogenic-related genes in response to a single bout of resistance exercise. Amino Acids, 47(6), 1203-1213. https://doi.org/10.1007/s00726-015-1947-8
Long, K. K., O’Shea, K. M., Khairallah, R. J., Howell, K., Paushkin, S., Chen, K. S., Cote, S. M., Webster, M. T., Stains, J. P., Treece, E., Buckler, A., & Donovan, A. (2018). Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Human Molecular Genetics, 28(7), 1076-1089. https://doi.org/10.1093/hmg/ddy382
Louis, E., Raue, U., Yang, Y., Jemiolo, B., & Trappe, S. (2007). Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. Journal of Applied Physiology, 103(5), 1744-1751.https://doi.org/10.1152/japplphysiol.00679.2007
Matsakas, A., Bozzo, C., Cacciani, N., Caliaro, F., Reggiani, C., Mascarello, F., & Patruno, M. J. E. p. (2006). Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. Experimental Physiology, 91(6), 983-994.
McCroskery, S., Thomas, M., Platt, L., Hennebry, A., Nishimura, T., McLeay, L., Sharma, M., & Kambadur, R. J. J. C. S. (2005). Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. Journal of Cell Science, 118(15), 3531-3541.
McIntosh, M. C., Sexton, C. L., Godwin, J. S., Ruple, B. A., Michel, J. M., Plotkin, D. L., Ziegenfuss, T. N., Lopez, H. L., Smith, R., Dwaraka, V. B., Sharples, A. P., Dalbo, V. J., Mobley, C. B., Vann, C. G., & Roberts, M. D. (2023). Different Resistance Exercise Loading Paradigms Similarly Affect Skeletal Muscle Gene Expression Patterns of Myostatin-Related Targets and mTORC1 Signaling Markers. Cells, 12(6).https://doi.org/10.3390/cells12060898
McPherron, A. C., Lawler, A. M., & Lee, S.-J. J. N. (1997). Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature, 387(6628), 83.
McPherron, A. C., & Lee, S.-J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 94(23), 12457-12461.https://doi.org/10.1073/pnas.94.23.12457 %J Proceedings of the National Academy of Sciences
Micielska, K., Gmiat, A., Zychowska, M., Kozlowska, M., Walentukiewicz, A., Lysak-Radomska, A., Jaworska, J., Rodziewicz, E., Duda-Biernacka, B., & Ziemann, E. (2019). The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. Diabetes research and clinical practice, 152, 156–165. https://doi.org/10.1016/j.diabres.2019.05.009
Mittleman, K. D., Ricci, M. R., & Bailey, S. P. (1998). Branched-chain amino acids prolong exercise during heat stress in men and women. Medicine and Science in Sports and Exercise, 30(1), 83-91.
Motahari Rad, M., Bijeh, N., Attarzadeh Hosseini, S. R., & Raouf Saeb, A. (2023). The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Archives of physiology and biochemistry, 129(2), 424–433. https://doi.org/10.1080/13813455.2020.1829649
Nicol, C., Kuitunen, S., Kyröläinen, H., Avela, J., & Komi, P. (2003). Effects of long-and short-term fatiguing stretch-shortening cycle exercises on reflex EMG and force of the tendon-muscle complex. European Journal of Applied Physiology, 90, 470-479.
Nosaka, K., Chapman, D., Newton, M., & Sacco, P. (2006). Is isometric strength loss immediately after eccentric exercise related to changes in indirect markers of muscle damage? Applied Physiology, Nutrition, and Metabolism, 31(3), 313-319.
Paddon-Jones, D., Muthalib, M., & Jenkins, D. (2000). The effects of a repeated bout of eccentric exercise on indices of muscle damage and delayed onset muscle soreness. Journal of Science and Medicine in Sport, 3(1), 35-43.
Peake, J., Nosaka, K. K., & Suzuki, K. (2005). Characterization of inflammatory responses to eccentric exercise in humans. Exercise Immunology Review, 11, 64-85.
Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiological Reviews, 88(4), 1379-1406.https://doi.org/10.1152/physrev.90100.2007
Pedersen, B. K., Steensberg, A., Fischer, C., Keller, C., Keller, P., Plomgaard, P., Wolsk-Petersen, E., & Febbraio, M. (2004). The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proceedings of the Nutrition Society, 63(2), 263-267. https://doi.org/10.1079/pns2004338
Peters, D., Barash, I. A., Burdi, M., Yuan, P. S., Mathew, L., Fridén, J., & Lieber, R. L. (2003). Asynchronous functional, cellular and transcriptional changes after a bout of eccentric exercise in the rat. Journal of Physiology, 553(Pt 3), 947-957.https://doi.org/10.1113/jphysiol.2003.048462
Rahimi, M. H., Shab-Bidar, S., Mollahosseini, M., & Djafarian, K. (2017). Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: A meta-analysis of randomized clinical trials. Nutrition, 42, 30-36.https://doi.org/https://doi.org/10.1016/j.nut.2017.05.005
Raue, U., Slivka, D., Jemiolo, B., Hollon, C., & Trappe, S. (2006). Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. Journal of Applied Physiology, 101(1), 53-59.https://doi.org/10.1152/japplphysiol.01616.2005
Riahy, S. (2024). The effects of 12 weeks of high-intensity interval training and moderate-intensity continuous training on FGF21, irisin, and myostatin in men with type 2 diabetes mellitus. Growth Factors, 42(1), 24-35.https://doi.org/10.1080/08977194.2023.2279163
Riazi, R., Wykes, L. J., Ball, R. O., & Pencharz, P. B. (2003). The total branched-chain amino acid requirement in young healthy adult men determined by indicator amino acid oxidation by use of L-[1-13C] phenylalanine. The Journal of Nutrition, 133(5), 1383-1389.
Ringleb, M., Javelle, F., Haunhorst, S., Bloch, W., Fennen, L., Baumgart, S., Drube, S., Reuken, P. A., Pletz, M. W., Wagner, H., Gabriel, H. H. W., & Puta, C. (2024). Beyond muscles: Investigating immunoregulatory myokines in acute resistance exercise – A systematic review and meta-analysis. The FASEB Journal, 38(7), e23596.https://doi.org/https://doi.org/10.1096/fj.202301619R
Rohde, T., MacLean, D. A., Richter, E. A., Kiens, B., & Pedersen, B. K. (1997). Prolonged submaximal eccentric exercise is associated with increased levels of plasma IL-6. American Journal of Physiology-Endocrinology and Metabolism, 273(1), E85-E91. https://doi.org/10.1152/ajpendo.1997.273.1.E85
Roth, S. M., Martel, G. F., Ferrell, R. E., Metter, E. J., Hurley, B. F., & Rogers, M. A. (2003). Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Experimental Biology and Medicine (Maywood, N.J.), 228(6), 706-709. https://doi.org/10.1177/153537020322800609
Schwarz, N. A., McKinley-Barnard, S. K., Spillane, M. B., Andre, T. L., Gann, J. J., & Willoughby, D. S. (2016). Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 41(8), 856-863. https://doi.org/10.1139/apnm-2016-0047 %M 27467217
Shabani, R., & Izaddoust, F. (2018). Effects of aerobic training, resistance training, or both on circulating irisin and myostatin in untrained women. Acta Gymnica, 48(2), 47-55. doi: 10.5507/ag.2018.007
Siddik, M. A. B., Mullins, C. A., Kramer, A., Shah, H., Gannaban, R. B., Zabet-Moghaddam, M., Huebinger, R. M., Hegde, V. K., MohanKumar, S. M. J., MohanKumar, P. S., & Shin, A. C. (2022). Branched-Chain Amino Acids Are Linked with Alzheimer's Disease-Related Pathology and Cognitive Deficits. Cells, 11(21), 3523.https://doi.org/10.3390/cells11213523
Smith, L., Fulmer, M., Holbert, D., McCammon, M. R., Houmard, J. A., Frazer, D., Nsien, E., & Israel, R. G. (1994). The impact of a repeated bout of eccentric exercise on muscular strength, muscle soreness and creatine kinase. British Journal of Sports Medicine, 28(4), 267-271.
Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156.
Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 6(10), a016295.
Tang, F.-C., Lee, C.-W., & Hsieh, S.-Y. (1997). Physiological and performance effects of adding branched-chain amino acids to a high carbohydrate formula diet during exercise. 中華民國營養學會雜誌, 22(4), 361-371.
Tang, F. (1996). Plasma branched-chain amino acid changes during energetic stress. Nutritional Sciences Journal, 21(1), 27-36.
Tipton, K. D., Elliott, T. A., Cree, M. G., Aarsland, A. A., Sanford, A. P., & Wolfe, R. R. (2007). Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. American Journal of Physiology-Endocrinology and Metabolism.
Trabulo, M., Mendes, M., Mesquita, A., & Seabra-Gomes, R. (1994). Does the modified Bruce protocol induce physiological stress equal to that of the Bruce protocol?. Revista Portuguesa de Cardiologia, 13(10), 753-760; 735-756.
Twist, C., & Eston, R. (2005). The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. European Journal of Applied Physiology, 94, 652-658.
Weber, M. G., Dias, S. S., de Angelis, T. R., Fernandes, E. V., Bernardes, A. G., Milanez, V. F., Jussiani, E. I., & de Paula Ramos, S. (2021). The use of BCAA to decrease delayed-onset muscle soreness after a single bout of exercise: a systematic review and meta-analysis. Amino Acids, 53(11), 1663-1678.
Wehling, M., Cai, B., & Tidball, J. G. (2000). Modulation of myostatin expression during modified muscle use. FASEB Journal, 14(1), 103-110.https://doi.org/10.1096/fasebj.14.1.103
Wilborn, C. D., Taylor, L. W., Greenwood, M., Kreider, R. B., & Willoughby, D. S. (2009). Effects of different intensities of resistance exercise on regulators of myogenesis. Journal of Strength and Conditioning Research, 23(8), 2179-2187.https://doi.org/10.1519/JSC.0b013e3181bab493
Willoughby, D. S. (2004). Effects of heavy resistance training on myostatin mRNA and protein expression. Medicine & Science in Sports & Exercise, 36(4), 574-582.https://doi.org/10.1249/01.mss.0000121952.71533.ea
Willoughby, D. S., & Taylor, L. (2004). Effects of concentric and eccentric muscle actions on serum myostatin and follistatin-like related gene levels. J Sports Sci Med, 3(4), 226-233.
Willoughby, D. S., & Wilborn, C. D. (2006). Estradiol in females may negate skeletal muscle myostatin mRNA expression and serum myostatin propeptide levels after eccentric muscle contractions. Journal of Sports Science and Medicine, 5(4), 672-681.
Yamashita M. (2020). Potential Role of Neuroactive Tryptophan Metabolites in Central Fatigue: Establishment of the Fatigue Circuit. International journal of tryptophan research : IJTR, 13, 1178646920936279. https://doi.org/10.1177/1178646920936279
Zhang, C., Li, Y., Wu, Y., Wang, L., Wang, X., & Du, J. (2013). Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. Journal of Biological Chemistry, 288(3), 1489-1499.
Zhao, Y., Wang, L., & Pan, J. (2015). The role of L-type amino acid transporter 1 in human tumors. Intractable & Rare Diseases Research, 4(4), 165–169.https://doi.org/10.5582/irdr.2015.01024
Ziyaiyan, A., Kordi, M., Hofmeister, M., Chamari, K., Moalla, W., & Gaeini, A. A. (2023). High-intensity circuit training change serum myostatin but not myogenin in adolescents' soccer players: a quasi-experimental study. BMC Sports Science, Medicine & Rehabilitation, 15(1), 15. https://doi.org/10.1186/s13102-023-00627-1