Basic Search / Detailed Display

Author: 張祖欣
Thesis Title: 超高容量氧化鋅近場光碟片之動態測試及分析
The Dynamic Testing and Analysis of Ultra High Capacity Zinc Oxide Near-Field Optical Disc
Advisor: 蔡定平
Tsai, Din-Ping
Degree: 碩士
Master
Department: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
Thesis Publication Year: 2007
Academic Year: 95
Language: 中文
Number of pages: 141
Keywords (in Chinese): 氧化鋅近場光碟片商用光碟測試機商業片三層片
Keywords (in English): near-field optical disk, ZnOx, CNR, DDU-1000, ITRI Commercial Disc Driver
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 216Downloads: 1
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 在本論文中,我們將針對當記錄點小於繞射極限時可複寫型DVD(DVD+RW)氧化鋅近場光碟片之載子雜訊比(Carrier to Noise Ratio, CNR)做分析,並且從中看出加上氧化鋅近場光學作用層後對小於繞射極限之記錄點的明顯解析能力,同時將研究其和一般市售光碟測試機的相容能力,最後再探討在不同間隔層(spacing layer)厚度下氧化鋅近場光碟片的行為表現,並進一步找出當記錄點大小為100nm時最佳寫入功率為23mW、最佳讀取功率為4mW及最佳間隔層厚度為60nm。

    For the application and realization of near-field optical disk, we use a prototypical commercial optical disk driver to measure and analyze the carrier to noise ratio (CNR) of recording mark trains on ZnOx-type near-field optical disk. The CNR value of recoding mark trains of 100nm can be achieved to 33dB. In the further studies, we change the layered structure of ZnOx-type near-field optical disk and optimize the write strategy of commercial optical disk driver. By the change of different thickness of dielectric spacer (ZnS-SiO2), the interaction between the ZnOx near-field active layer and phase-change material is studied. From the experimental results, the optimized layered structure can be obtained as DVD+RW\ ZnS-SiO2 (130nm)\ ZnOx (15nm)\ ZnS-SiO2 (60nm)\ Ge2Sb2Te5 (20nm)\ ZnS-SiO2 (20nm) with bonding.

    第一章:緒論------------------------------------------------1 1-1記錄儲存媒體的演進及分類----------------------------------1 1-2光碟片容量及規格的發展------------------------------------1 1-3相變化(Phase Change)材料光碟片原理及膜層結構分析-----------8 1-3-1相變化型光碟片工作原理----------------------------------8 1-3-2相變化型光碟片之膜層結構--------------------------------9 1-4奈米光學儲存原理及發展-----------------------------------11 1-4-1奈米光學儲存記錄之發展---------------------------------11 1-4-2近場光學探針記錄--------------------------------------14 1-4-3固態浸沒透鏡式光學讀寫頭(Solid ImmersionLens,SIL)-----16 1-5近場光碟片之發展----------------------------------------22 1-5-1近場光碟片膜層結構------------------------------------22 1-5-2近場光碟片的發展--------------------------------------23 第二章:實驗儀器設備及基本原理-------------------------------29 2-1 DDU-1000設備架構及功能---------------------------------29 2-2 DDU-1000之工作原理------------------------------------31 2-3 DDU-1000之量測步驟------------------------------------36 2-4工研院商用光碟測試機(ITRI Commercial Disc Driver)架構功能-37 2-5工研院商用光碟測試機(ITRI Commercial Disc Driver)測試流程-40 第三章:樣品製程、處理與實驗結果及分析------------------------42 3-1實驗樣品製程---濺鍍機(Sputter)介紹-----------------------42 3-2 DDU-1000及ITRI Commercial Disc Driver對DVD+RW商業片的量測結果及分析------------------------------------------------46 3-3 DDU-1000及ITRI Commercial Disc Driver對DVD+RW三層結構型式光碟片的量測結果及分析--------------------------------------51 3-4 DDU-1000及ITRI Commercial Disc Driver對DVD+RW氧化鋅近場結構光碟片的量測結果及分析------------------------------------56 3-5 改變氧化鋅近場光碟片間隔層厚度的實驗結果及分析(改變記錄點大小之討論)----------------------------------------------------68 3-6改變氧化鋅近場光碟片間隔層厚度的實驗結果及分析(改變寫入功率大小之討論)----------------------------------------------------92 3-7改變氧化鋅近場光碟片間隔層厚度的實驗結果及分析(改變讀取功率大小之討論)----------------------------------------------------105 3-8 近場結構光碟片與商業片及三層結構光碟片之比較(in DDU-1000)-118 3-9 近場結構光碟片與商業片及三層結構光碟片之比較(in ITRI Commercial Disc Driver)----------------------------------120 3-10 實驗結果之原因探討------------------------------------123 第四章:結論----------------------------------------------127 Reference------------------------------------------------130

    [1]陳星光, 國立台灣海洋大學光電科學研究所碩士論文,第一章,第二章 (2006).
    [2]高宗聖, 國立台灣大學物理研究所碩士論文, 第二章,第三章 (2004).
    [3]E. Betzig, Appl.Phys.Lett. 61(2), 142 (1992).
    [4]J. Tominaga. H. Fuji. A. Sato, T. Tankano, N. Atoda, Jpn. J Appl, Phys, 39,
    957 (2000).
    [5]蔡定平,林威志,光訊,第八十七期,十四~二十頁 (2000).
    [6]W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen,
    D. P. Tsai, Jpn. J. Appl. Phys, 42 (2003).
    [7]H. Fuji, T. Kikukawa, J. Tominaga, Appl. Phys. Lett., 43, 7A (2004).
    [8]吳寶忠, 國立台灣師範大學光電科技研究所碩士論文, 第三章 (2007).
    [9]G. Mor,M. Yamamoto, H. Tajima, N. Takamoriand, A. Takahashi,Jpn.J.Appl.
    Phys.,44, 5B (2005).
    [10]D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F.
    Tseng, C. H. Lee, C. J. Yeh, Jpn. J. Appl. Phys., 39, 982 (2000).
    [11]D. P. Tsai, W. C. Lin, Appl. Phys. Lett., 77, 1413 (2000).
    [12]W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, D. P. Tsai, Appl. Phys. Lett.,
    78, 685(2001).
    [13]Y. Guo, H. Ming, L. Tang, Y. H. Lu, P. Wang, D. P. Tsai, W. C. Lin, Opt.Co-
    mm., 212, 7 (2002).
    [14]Y. Guo, H. Ming, L. Tang, P. Wang, Y. H. Lu, C. S. Xiong, Y. H. Xiong, T. P. Zhao, D. P. Tsai, W. C. Lin, Optical, 113, 322 (2002).
    [15]W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, D. P. Tsai, Jpn. J. Appl. Phys., 42, 1029 (2003).
    [15] K. P. Chiu, W. C. Lin, Y. H. Fu, D. P. Tsai, Jpn. J. Appl. Phys, 43, 4730
    (2004).
    [16]林威志,蔡定平,光訊,第八十九期,四十五頁 (2001).
    [17]林威志,蔡定平,劉威志,光學工程,七十八期,二十頁 (2002).
    [18]林威志,蔡定平,光訊,九十九期,八頁 (2002).
    [19]林威志,蔡定平,電子月刊,第九十期,一百六十七頁 (2003).
    [20]蔡定平,光訊,第七十四期,十一~十四頁 (1998).
    [21]蔡定平,光訊,第七十五期,二十九~三十一頁 (1999).
    [22]S. K. Lin, P. Yang, I. C. Lin, H. W. Hsu, D. P. Tsai, Jpn. J. Appl.Phys., 45,
    2B (2006).
    [23]J.Tominoga, T. Nakano, N. Atoda, SPIE Proc., 3467, 282 (1998).
    [24] J.Tominaga, T. Nakano, N. Atoda, Jpn. J. Appl. Phys., 37, 1852 (1998).
    [25] J.Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, N. Atoda, Jpn. J.
    Appl.Phys., 37, L1323 (1998).
    [26]T. Nakano, A. Sato, H. Fuji, J. Tominaga, and N. Atoda, Appl. Phys. Lett.,
    75, 151 (1999).
    [27]J. Tominaga, T. Fukaya, Adv. Sol. Phys., 39, 37 (1999).
    [28]J. H. Kim, D. Buechel, T. Nakano, J. Tominaga, N. Atoda, H. Fuji, Y.
    Yamakawa, Appl. Phys. Lett., 77, 1774 (2000).
    [29]M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, N. Atoda, Microelectro-
    nic Engineering, 53, 535 (2000).
    [30]L. Men, J. Tominaga, H. Fuji, T. Kikukawa, N. Atoda, Jpn. J. Appl. Phys.,
    40, 1629 (2001).
    [31]J. Kim, T. Shima, N. Atoda, J. Tominaga, J. Vac. Sci. Tech., 20 (2002).
    [32]Q. Liu, T. Fukaya, J. Tominaga, M. Kuwahara, T. Shima, J. Kim, Opt. Lett.,
    28, 1805 (2003).
    [33]H. Fuji, T. Kikukawa, J. Tominaga, Jpn. J. Appl. Phys., 42, L589 (2003).
    [34]M. Kuwahara, T. Shima, A. Kolobov, J. Tominaga, Jpn. J. Appl. Phys., 43,
    L8 (2004).
    [35]T. Shima, T. Nakano, J. Kim , J. Tominaga. Jpn.J.Appl. Phys., 44, 5B (2005).
    [36]N. Takmaori, M. Yamamoto, G. Mori, H. TajmaA, A. Takahshi, Jpn. J.Appl.
    Phys., 45, 2B (2006).
    [37]M. Yammoto, G. Mori, H. Tamima, N. Takamori, A. Takahashi. Jpn. J. Appl.
    Phys., 43, 7B (2004).
    [38]S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai , J.
    Appl. Phys. 93 (2003).
    [39]T. Kikukawa, T. Kato, H. Shingai, H. Utsunomiya, Jpn. J. Appl. Phys .40
    (2001).
    [40]J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, Jpn. J. Appl. Phys .39
    (2000).
    [41]F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, D. P. Tsai, Jpn. J.
    Appl. Phys. 40 (2001).
    [42]J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, D. P. Tsai, Jpn. J. Appl. Phys. 45,
    2B (2006).
    [43]J. Tominaga, T. Nakano, N. Atoda, Appl. Phys. Lett. 73 (1998).
    [44] T. Kikukawa, H. Nakano, T. Shima, J. Tominaga, Appl. Phys. Lett. 81
    (2002).
    [45]M. Yamamoto, G. Mori, H. Tajima, N. Takamori, A. Takahashi, Jpn. J.
    Appl. Phys. 43 (2004).
    [46] H. Fuji, T. Kikukawa, J. Tominaga, Jpn. J. Appl. Phys. 42 (2003).
    [47] H. Fuji, T. Kikukawa, J. Tominaga, Jpn. J. Appl. Phys. 43 (2004).

    QR CODE