Basic Search / Detailed Display

Author: 王迪彥
Wang Di-Yan
Thesis Title: 奈米材料的製備及在燃料電池與太陽能電池上的應用
The Fabrications of Nano-materials for Fuel and Solar Cell Applications
Advisor: 陳家俊
Chen, Chia-Chun
Degree: 博士
Doctor
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2010
Academic Year: 98
Language: 英文
Number of pages: 135
Keywords (in Chinese): 太陽能燃料電池奈米粒子
Keywords (in English): solar cell, fuel cell, nanoparticles
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 253Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究主要針對於在尋找新奇的奈米材料並且在燃料電池及太陽能電池上有實質的應用性,例如我們發現在利用控制反應溫度、陽離子與奈米粒子濃度而發生離子交換反應,成功發展出利用離子交換機制之新奇的方法來合成含有Ru與Pt多重合金之奈米粒子,進而由X光吸收光譜來確定其奈米粒子中所進行氧化還原陽離子交換反應之機制。另外我們進而測試此FexPtRu1-x奈米粒子在甲醇催化上的反應特性,其主要是用於測試CO剝除與甲醇催化的效果。利用XAS中的EXAFS數據分析結構及表面組成,並觀察其以旋轉電極測試之CO剝除、甲醇催化與氧氣還原反應的影響。另外在陰極氧氣還原方面,我們成功合成出dendrited-like之FePt奈米粒子,並展現對氧氣有很好的催化活性,並利用理論計算在不同表面,如(111),(200)和(311)平面之surface energy以及其對O2之吸附能的結果來討論其奈米粒子對氧氣還原的催化效果。
    另外在太陽能電池的研究方面,我們成功合成出低能隙的二硫化鐵之奈米粒子以提升元件對太陽光譜的吸收能力,本研究利用低能隙的硫化鐵奈米粒子與高分子混掺製備光伏元件,實驗結果顯示添加硫化鐵確實可使元件吸收近紅外光的能量,然而對於最佳化製程和元件效能仍需要未來進一步的探討。最後也展示出以二硫化鐵作為近紅外光偵測器的主動層,並以氧化锌 (ZnO) 作為元件 blocking layer之研究。

    The thesis attempts to develop an efficient electrocatalyst for DMFC and a novel material with near infrared absorption for solar cell appication. Following these concepts, the nanomaterials with different functions have been developed and shown their special properties on fuel cell or solar cell applications.

    In chapter 3, the new ternary Fe1-xPtMx nanocrystals were tested for their catalytic properties in the anodic electrode of a fuel cell. Their catalytic capability will be discussed elsewhere. Furthermore, the in situ studies of detailed chemical transformation from binary to ternary metal nanocrystals using X-ray absorption spectroscopy were on progress. Overall, our results have demonstrated a simple and rapid route for the syntheses of new catalysts based on metal alloy nanocrystals.

    In chapter 4, we have demonstrated that the Fe1-xPtRux NCs with various Fe/Ru ratios and alloying extent were well-controlled via chemical transformation in solid solution phase. Moreover, the solid solution Fe1-xPtRux NCs showed the unique catalytic performance for CO stripping and methanol oxidation in comparison with FePt NCs and commercial J-M PtRu catalysts. The enhanced electrocatalytic properties for methanol oxidation reaction can be attributed to that the electron density of Pt-CO bond in the Fe1-xPtRux NCs becomes weaker due to charger transfer from Fe and Ru to Pt atoms based on the density functional theoretic studies. Overall result has suggested that the chemical transformation reaction of the solid solution NCs is a quite useful method to modify the surface of the NCs and improve the catalytic activity in DMFC applications.

    In chapter 5, we have developed FePt alloy nanodendrites with high-index facets. The activity increased in the following order: FePt nanoparticles (111) < FePt nanocube (200) < FePt nanodendrites (311), indicating that the nanostructure with high-facet index possessed higher surface energy and demonstrated higher catalytic activity for ORR. We observe that the different coordination number and surface energy in the FePt hkl facets. The formation of different facets is attributed to the different degrees of surface reconstruction induced by oxygen adsorption.
    In chapter 6, A soft and biocompatible surface-enhanced Raman scattering (SERS) substrate was fabricated based on a three-dimensional (3D) structure of end-tethered poly(L-lysine) (“t-PLL”) with a brush-like configuration conjugated with silver nanoparticles (Ag NPs) (Ag NPs-t-PLL film). The conjugation procedures were carefully adjusted to generate the films with different interval widths (W) between Ag NPs and diameters (D) of Ag NPs. The resulting film was then characterized by zeta potential, CD spectropolarimeter and scanning electron microscopy. Furthermore, the studies of SERS enhancements using Ag NPs-t-PLL film as a substrate were performed. The significant increases of SERS enhancements have been obtained as W/D was decreased from 0.9 to 0.2. Our results not only afford a facile fabrication of a 3D soft substrate for SERS with high sensitivity and biocompatibility but also offer great potentials for the development of new biosensors.
    In chapter 7, we use new material for organic IR harvesting solar cells application based on poly(3-hexylthiophene)-iron disulfide (FeS2) nanocrystal(NCs) blend. The devices exhibited high photo-electric current conversion efficiency in infrared region (>700 nm)where the external quantum efficiency was 6.5% at wavelength 650nm and 1% at 700 nm. The photoresponsed measurement also indicated that onset of photogenerated edge was about 900nm, which is contributed by FeS2 NCs. The device power conversion efficiency under AM 1.5 100 mw/cm2 illumination was 0.13%, short circuit current density of 0.7mA/cm2, open circuit voltage of 0.44V and fill factor(FF) about 42.6%. This study also pointed out that FeS2 NCs:P3HT hybrid can provide a low cost, environment friendly and easy process organic solar cells.

    In chapter 8, We have demonstrated that solution-processed NIR photodetectors can be conveniently fabricated using films of FeS2 nanocrystals. With the I-V Characteristics and temporal photoresponse achieved, the FeS2-based device is suitable for NIR detector application. At light wavelength above 715 nm, a strong photocurrent is seen, with a photo-to-dark current ratio of 176. The characteristic times for rise and fall of photocurrent are 0.55s and 1.1s, respectively. Our device can work reproducibly in air. Considering the advantages of solution-process fabrication, low cost and environment friendly, the FeS2-based photodetector have high potential for use in near infrared range application

    Table of Content I Journal paper V 摘要 VI Abstract VII Chapter 1 Introduction 1 1.1 Fuel cell 2 1.2 Materials for photovoltaic 7 1.3.1 Inorganic semiconductors 8 1.5 Outline of this thesis 9 1.6 Reference 13 Chapter 2 Experimental setup 14 2-1 Transmission Electron Microscope (TEM) 14 2.2 X-ray Powder Diffractometer (XRD) 15 2.3 Solar spectrum 16 2.4 Spectral response 18 2.5 UV-Visible absorption, photoluminescence and Time-resolved PL 19 2.6 Cyclic Voltammetry (CV) 19 Chapter 3 Chemical Transformation from FePt to Fe1-xPtMx (M = Ru, Ni, Sn) Nanocrystals by a Cation Redox Reaction: X-ray Absorption Spectroscopic Studies 21 3.1 Introduction 22 3.2 Fabrication of Fe1-xPtMx (M = Ru, Sn, Ni) nanocrystals 25 3.2 Result and Discussion 25 3-3 Conclusion 33 3-4 Reference 34 Chapter 4 Solid-Solution Fe1-xPtRux Nanocrystals for Enhanced Methanol Electrooxidation in Fuel Cell Application: X-ray Absorption Spectroscopic and Density Functional Theoretic Studies 36 4.1 Introduction 37 4.2 Results and Discussion 40 4.2.1. Structure Characterization of the solid solution Fe1-xPtRux NCs. 40 4.2.2 Catalytic activity measurement of the solid Solution Fe1-xPtRux NCs toward methanol oxidation reaction. 49 4.2.3. The theoretical simulation of electron transfer and CO adsorption energy on Pt, PtRu, and solid solution Fe1-xPtRux NCs. 52 4.3 Discussion 56 4-4 Conclusion 58 4-5 Reference 59 Chapter 5 FePt Alloy Nanodendrites with High-Index Facet: High ORR and Its Catalytic Properies 63 5.1 Introduction 64 5.2 Experiment 67 5.2.1 Synthesis of FePt nanoparticles.52 67 5.2.2 Synthesis of FePt nanocubes.53 67 5.2.3 Synthesis of FePt alloy nanodendrites 68 5.2.4 High Resolution Transmission Electron Microscopy (HRTEM) and X-ray Diffraction Patterns Measurement. 68 5.2.5 Computation Detail 68 5.2.6 Electrode Prepareation and Electrochemical Measurements. 70 5.3 Results and Discussion 71 5.3.1 Characteristic properties of d XRD and TEM. 71 5.3.3 Surface Energy and Binding energies of O2 on Pt and FePt hkl planes. 75 5.3.4 Characterization of catalytic activity of FePt nanodendrites 78 5.4 Conclusion 81 5.5 Reference 82 Chapter 6 Silver Nanoparticles Conjugated Polypeptide Brushes for Surface Enhanced Raman Scattering 88 6.1 Introduction 89 6.2 Experiment 94 6.2.1 Synthesis of t-PLL brush 94 6.2.2 Synthesis of Au and Ag NPs 95 6.2.3 Preparation of the Ag NPs-t-PLL film 95 6.2.4 Raman spectroscopy measurements 96 6.3 Results and Discussion 96 6.3.1. Preparation and characterization of t-PLL brushes and Ag NPs. 96 6.3.2 Preparation and Characterization of Ag NPs Conjugated with t-PLL brushes. 99 6.4 Conclusion 107 6.5 Reference 108 Chapter 7 Extended red light harvesting in a P3HT/FeS2 nanocrystal hybrid solar cell 111 7.1 Introduction 112 7.1.1 IR harvesting organic photovoltaic device 112 7.1.2 Low band gap polymer/PCBM Bulk heteojunction 113 7.1.3. Polymer/inorganic nanocrystal hybrid dot device 113 7.2 Iron disulfide synthesis 115 7.2.1 Structure characteristics 115 7.2.2 Optical characteristics 116 7.3 Optical properties of P3HT/FeS2 nanocrystal hybrid 116 7.3.1 Absorption spectra 116 7.3.2 Photoluminescence spectra 117 7.3.3 Photovoltaic device characteristics 118 7.4 Conclusions 120 7.5 Reference 121 Chapter 8 Solution-Processed Near-Infrared Photodetectors Based on FeS2 Nanocrystals 123 8.1 Introduction 124 8.2 Experiment 126 8.2.1 Synthesis of FeS2 nanocrystals 126 8.2.2 Fabrication of FeS2-based near infrared photodetector 126 8.3 Result and Discussion 126 8.3.1 Characterization of FeS2 nanocrystals 126 8.3.2 Schematic structure of FeS2-based near infrared photodetector 128 8.3.3 I-V Characteristic and Temporal photoresponse of FeS2-based near infrared photodetector device 130 8.4 Conclusion 133 8.5 Reference 134

    (1)Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K. I.; Iwashita, N. Chem. Rev. 2007, 107, 3904-3951.
    (2)Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. J. Power Sources 2006, 155, 95-110.
    (3)Wee, J. H.; Lee, K. Y. J. Power Sources 2006, 157, 128-135.
    (4)Liu, S. H.; Yu, W. Y.; Chen, C. H.; Lo, A. Y.; Hwang, B. J.; Chien, S. H.; Liu, S. B. Chem. Mat. 2008, 20, 1622-1628.
    (5)Sau, T. K.; Lopez, M.; Goia, D. V. Chem. Mat. 2009, 21, 3649-3654.
    (6)Wu, G.; Li, L.; Xu, B. Q. Electrochim. Acta 2004, 50, 1-10.
    (7)Roth, C.; Benker, N.; Buhrmester, T.; Mazurek, M.; Loster, M.; Fuess, H.; Koningsberger, D. C.; Ramaker, D. E. J. Am. Chem. Soc. 2005, 127, 14607-14615.
    (8)Gavrilov, A. N.; Savinova, E. R.; Simonov, P. A.; Zaikovskii, V. I.; Cherepanova, S. V.; Tsirlina, G. A.; Parmon, V. N. Phys. Chem. Chem. Phys. 2007, 9, 5476-5489.
    (9)Stoupin, S.; Rivera, H.; Li, Z. R.; Segre, C. U.; Korzeniewski, C.; Casadonte, D. J.; Inoue, H.; Smotkin, E. S. Phys. Chem. Chem. Phys. 2008, 10, 6430-6437.
    (10)Wiltshire, R. J. K.; King, C. R.; Rose, A.; Wells, P. P.; Davies, H.; Hogarth, M. P.; Thompsett, D.; Theobald, B.; Mosselmans, F. W.; Roberts, M.; Russell, A. E. Phys. Chem. Chem. Phys. 2009, 11, 2305-2313.
    (11)Antolini, E. Appl. Catal. B-Environ. 2007, 74, 324-336.
    (12)Ley, K. L.; Liu, R. X.; Pu, C.; Fan, Q. B.; Leyarovska, N.; Segre, C.; Smotkin, E. S. J. Electrochem. Soc. 1997, 144, 1543-1548.
    (13)Park, K. W.; Choi, J. H.; Ahn, K. S.; Sung, Y. E. J. Phys. Chem. B 2004, 108, 5989-5994.
    (14)Wang, Z. B.; Yin, G. P.; Lin, Y. G. J. Power Sources 2007, 170, 242-250.
    (15)Yang, L. X.; Allen, R. G.; Scott, K.; Christenson, P.; Roy, S. J. Power Sources 2004, 137, 257-263.
    (16)Huang, T.; Jiang, R. R.; Liu, J. L.; Zhuang, J. H.; Cai, W. B.; Yu, A. S. Electrochim. Acta 2009, 54, 4436-4440.
    (17)Zhu, J.; Cheng, F. Y.; Tao, Z. L.; Chen, J. J. Phys. Chem. C 2008, 112, 6337-6345.
    (18)Kawaguchi, T.; Rachi, Y.; Sugimoto, W.; Murakami, Y.; Takasu, Y. J. Appl. Electrochem. 2006, 36, 1117-1125.
    (19)Huang, T.; Liu, J. L.; Li, R. S.; Cai, W. B.; Yu, A. S. Electrochem. Commun. 2009, 11, 643-646.
    (20)Sun, C. L.; Hsu, Y. K.; Lin, Y. G.; Chen, K. H.; Bock, C.; MacDougall, B.; Wu, X. H.; Chen, L. C. J. Electrochem. Soc. 2009, 156, B1249-B1252.
    (21)Liang, Y. M.; Zhang, H. M.; Tian, Z. Q.; Zhu, X. B.; Wang, X. L.; Yi, B. L. J. Phys. Chem. B 2006, 110, 7828-7834.
    (22)Eguiluz, K. I. B.; Salazar-Banda, G. R.; Miwa, D.; Machado, S. A. S.; Avaca, L. A. J. Power Sources 2008, 179, 42-49.
    (23)Geng, D. S.; Matsuki, D.; Wang, J. J.; Kawaguchi, T.; Sugimoto, W.; Takasu, Y. J. Electrochem. Soc. 2009, 156, B397-B402.
    (24)Liang, Y. M.; Zhang, H. M.; Zhong, H. X.; Zhu, X. B.; Tian, Z. Q.; Xu, D. Y.; Yi, B. L. J. Catal. 2006, 238, 468-476.
    (25)Liao, S. J.; Holmes, K. A.; Tsaprailis, H.; Birss, V. I. J. Am. Chem. Soc. 2006, 128, 3504-3505.
    (26)Alayoglu, S.; Zavalij, P.; Eichhorn, B.; Wang, Q.; Frenkel, A. I.; Chupas, P. ACS Nano 2009, 3, 3127-3137.
    (27)Godoi, D. R. M.; Perez, J.; Villullas, H. M. J. Phys. Chem. C 2009, 113, 8518-8525.
    (28)Greeley, J.; Mavrikakis, M. Nat. Mater. 2004, 3, 810-815.
    (29)Hwang, B. J.; Sarma, L. S.; Chen, J. M.; Chen, C. H.; Shih, S. C.; Wang, G. R.; Liu, D. G.; Lee, J. F.; Tang, M. T. J. Am. Chem. Soc. 2005, 127, 11140-11145.
    (30)Hwang, B. J.; Sarma, L. S.; Wang, G. R.; Chen, C. H.; Liu, D. G.; Sheu, H. S.; Lee, J. F. Chem.-Eur. J. 2007, 13, 6255-6264.
    (31)Russell, A. E.; Rose, A. Chem. Rev. 2004, 104, 4613-4635.
    (32)Wang, D.; Zhuang, L.; Lu, J. T. J. Phys. Chem. C 2007, 111, 16416-16422.
    (33)Bock, C.; Blakely, M. A.; MacDougall, B. Electrochim. Acta 2005, 50, 2401-2414.
    (34)Koper, M. T. M.; Shubina, T. E.; van Santen, R. A. J. Phys. Chem. B 2002, 106, 686-692.
    (35)Mpourmpakis, G.; Andriotis, A. N.; Vlachos, D. G. Nano Lett., 10, 1041-1045.
    (36)Pitois, A.; Davies, J. C.; Pilenga, A.; Pfrang, A.; Tsotridis, G. J. Catal. 2009, 265, 199-208.
    (37)Yajima, T.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2004, 108, 2654-2659.
    (38)Hwang, B. J.; Sarma, L. S.; Chen, C. H.; Bock, C.; Lai, F. J.; Chang, S. H.; Yen, S. C.; Liu, D. G.; Sheu, H. S.; Lee, J. F. J. Phys. Chem. C 2008, 112, 19922-19929.
    (39)Lai, F. J.; Chou, H. L.; Sarma, L. S.; Wang, D. Y.; Lin, Y. C.; Lee, J. F.; Hwang, B. J.; Chen, C. C. Nanoscale, 2, 573-581.
    (40)Chen, C. H.; Sarma, L. S.; Wang, D. Y.; Lai, F. J.; Al Andra, C. C.; Chang, S. H.; Liu, D. G.; Chen, C. C.; Lee, J. F.; Hwang, B. J. ChemCatChem, 2, 159-166.
    (41)Wang, D. Y.; Chen, C. H.; Yen, H. C.; Lin, Y. L.; Huang, P. Y.; Hwang, B. J.; Chen, C. C. J. Am. Chem. Soc. 2007, 129, 1538-+.
    (42)Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354-360.
    (43)Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comput. Chem. 2007, 28, 899-908.
    (44)Dupont, C.; Jugnet, Y.; Loffreda, D. J. Am. Chem. Soc. 2006, 128, 9129-9136.
    (45)Kim, T. Y.; Kobayashi, K.; Takahashi, M.; Nagai, M. Chem. Lett. 2005, 34, 798-799.

    無法下載圖示 This full text is not authorized to be published.
    QR CODE