Basic Search / Detailed Display

Author: 蔡晴羽
Cai, Sylvia Qingyu
Thesis Title: 硒化銦-石墨烯異質結構電導的第一原理研究
Conductance of InSe-Graphene Heterostructures: Ab Initio Studies
Advisor: 關肇正
Kaun, Chao-Cheng
陳穎叡
Chen, Yiing-Rei
Degree: 碩士
Master
Department: 物理學系
Department of Physics
Thesis Publication Year: 2019
Academic Year: 107
Language: 英文
Number of pages: 36
Keywords (in Chinese): 硒化銦石墨烯二維材料異質結構量子傳輸奈米元件第一原理計算密度泛函理論非平衡格林函數理論
Keywords (in English): Indium Selenide, Graphene, 2D Materials, Heterostructures, Quantum Transport, Nanodevices, Ab Initio Calculations, DFT, NEGF
DOI URL: http://doi.org/10.6345/NTNU201900057
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 222Downloads: 1
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 這項研究是針對一系列由單層硒化銦(SL-InSe)和單層石墨烯(SLG)組成的凡德瓦異質結構所進行的第一原理研究。研究過程中,依照硒化銦與石墨烯層間不匹配(Mismatch)的邊界形貌將一系列異質結構量子元件劃分成兩類,以探究其性質差異並進行計算。
    本研究關注的是硒化銦-石墨烯異質結構的量子傳輸特性,所有計算模擬的理論基礎結合了密度泛函理論(DFT)與Keldysh非平衡格林函數(NEGF)理論。進階的量子傳輸計算由Nanodcal完成,Nanodcal是一種基於NEGF-DFT理論方法的計算工具,本研究中使用的所有建模與計算工具包括:VASP,VESTA,Device Studio和Nanodcal。研究結果呈現出所選系列中硒化銦-石墨烯異質結構的量子傳輸趨勢。

    This research is demonstrated for a ab initio study on a series of few-layered van der Waals heterostructures composed of single-layer (SL) indium selenide (InSe) and single-layer Graphene (SLG). The series of SL-InSe/SLG heterostructures contains two groups of bi-layer mismatched InSe-Graphene heterojunctions. This study focus on quantum transport properties of InSe-Graphene heterojunctions, and all calculations are based on density functional theory (DFT) simulations combined with the Keldysh non-equilibrium Green's function (NEGF) method. Advanced transport calculations are done by Nanodcal, a powerful tool based on NEGF-DFT, and all computational tools used in this study include VASP, VESTA, Device Studio, and Nanodcal. Our results highlight the tendency of quantum transport in each kind of bi-layer InSe-Graphene heterostructures.

    ABSTRACT i CONTENTS ii LIST OF FIGURES iv Chapter 1 Introduction 1 1.1 Preface 1 1.2 Band Structure of Few-Layered InSe 2 1.3 Electron Mobility of InSe-Graphene Heterostructures 3 Chapter 2 Theory and computational method 5 2.1 Density Functional Theory (DFT) 5 2.2 Exchange-Correlation Functional: GGA-PBE 6 2.3 Non-Equilibrium Green’s Functions (NEGF) 7 2.4 Computational Details 10 2.4.1 Models Construction 10 2.4.2 Geometric Relaxation 11 2.4.3 Quantum Transport Calculations 12 Chapter 3 Results and Discussions 15 3.1 The Designated SL-InSe/SLG Heterostructures 15 3.2 The Band Structure and the Primitive Unit Cell of InSe 15 3.3 Structural Building of SL-InSe/SLG Heterostructures 18 3.4 Advanced Calculations of SL-InSe/SLG Heterostructures 23 3.4.1 Delta Hartree Potential 23 3.4.2 Density of States and Transmission Coefficient 25 3.4.3 Conductance 27 3.4.4 I-V curves 29 3.4.5 Conclusions 32 REFERENCE 34

    [1] D. A. Bandurin , A. V. Tyurnina and G. L. Yu , Nat. Nanotechnol., 2017, 12 , pp. 223-227. DOI: 10.1038/nnano.2016.242
    [2] J. F. Sánchez-Royo et al. Nano Res., 2014, 7, pp. 1556-1568. DOI: 10.1007/s12274-014-0516-x
    [3] G. W. Mudd et al. Sci. Rep., 2016, 6, 39619. DOI: 10.1038/srep39619
    [4] S. A. Svatek et al. J. Phys.: Conf. Ser., 2015, 647 012001. DOI: 10.1088/1742-6596/647/1/012001
    [5] S. J. Magorrian, V. Zólyomi, and V. I. Fal'ko, Phys. Rev. B, 2016, 94, 245431. DOI: 10.1103/physrevb.94.245431
    [6] P. Hohenberg, W. Kohn, Phys. Rev., 1964, 136(3B), B864. DOI: 10.1103/PhysRev.136.B864
    [7] W. Kohn, L.J. Sham, Phys. Rev., 1965, 137, A1697. DOI: 10.1103/PhysRev.137.A1697
    [8] J.R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. Lett., 1994, 72, pp. 1240-1243. DOI: 10.1103/PhysRevLett.72.1240
    [9] D.C. Langreth, M.J. Mehl, Phys. Rev. B., 1983, 28, pp. 1809-1834. DOI:  10.1103/PhysRevB.28.1809
    [10] B. B. Laird, R. B. Ross, and T. Ziegler, Eds., Chemical Applications of Density-Functional Theory., 1996, ACS Symposium series, Chapter 30, pp. 453-462. DOI: 10.1021/bk-1996-0629.ch030
    [11] Κ. Burke, J. P. Perdew, and M. Levy, in Modern Density Functional Theory: A Tool for Chemistry, 1995, J. M. Seminario and P. Politzer, Eds. Elsevier, Amsterdam. DOI: 10.1007/978-1-4899-0316-7_7
    [12] J. P. Perdew, K. Burke, and M. Ernzerhof Phys. Rev. Lett., 1996, 77, pp. 3865-3868. DOI: 10.1103/PhysRevLett.78.1396
    [13] L. V. Keldysh, Sov. Phys. JETP, 1965, 20(4), pp. 1018-1026. http://www.jetp.ac.ru/cgi-bin/dn/e_020_04_1018.pdf
    [14] S. Datta, Electronic Transport in Mesoscopic Systems, 1995, Cambridge University Press, Cambridge.
    [15] S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport, 2012, World Scientific, Singapore. http://www.nanohub.org/courses/FoN1
    [16] A. P. Jauho, Introduction to the Keldysh Nonequilibrium Green Function Technique, https://nanohub.org/resources/1877
    [17] S. Datta, Superlattices and Microstructures, 2000, 28, 4, pp. 253-278. DOI: 10.1006/spmi.2000.0920
    [18] J. Hafner, J. Comput. Chem., 2008, 29, pp. 2044-2078. DOI: 10.1002/jcc.21057
    [19] J. Taylor, H. Guo, J. Wang, Phys. Rev. B, 2001, 63, 205407. DOI: 10.1103/PhysRevB.63.245407
    [20] Nanoacademic Technologies, http://nanoacademic.ca
    [21] Y. Xue, S. Datta, M.A. Ratner, Chem. Phys.,2002, 281, 151. DOI: 10.1016/S0301-0104(02)00446-9
    [22] R Landauer, J. Phys.: Condens. Matter, 1989, 1, pp. 8099-8110. DOI: 10.1088/0953-8984/1/43/011
    [23] A. Pecchia and A. Di Carlo, Rep. Prog. Phys., 2004, 67, pp. 1497-1561. DOI: 10.1088/0034-4885/67/8/R04
    [24] J. Taylor, H. Guo and J. Wang, Phys. Rev. B.,2001, 63, 245407. DOI: 10.1103/PhysRevB.63.245407
    [25] P. Pulay, J. Comput. Chem., 1982, 3(4), pp. 556-560. DOI: 10.1002/jcc.540030413
    [26] P. Pulay, Chem. Phys. Lett., 1980, 73, pp. 393-398. DOI: 10.1016/0009-2614(80)80396-4
    [27] W. Feng, W. Zheng, W. Cao and P. Hu, Adv. Mater., 2014, 26, pp. 6587-6593 DOI: 10.1039/c7cp07270h

    下載圖示
    QR CODE