Author: |
蔡晴羽 Cai, Sylvia Qingyu |
---|---|
Thesis Title: |
硒化銦-石墨烯異質結構電導的第一原理研究 Conductance of InSe-Graphene Heterostructures: Ab Initio Studies |
Advisor: |
關肇正
Kaun, Chao-Cheng 陳穎叡 Chen, Yiing-Rei |
Degree: |
碩士 Master |
Department: |
物理學系 Department of Physics |
Thesis Publication Year: | 2019 |
Academic Year: | 107 |
Language: | 英文 |
Number of pages: | 36 |
Keywords (in Chinese): | 硒化銦 、石墨烯 、二維材料 、異質結構 、量子傳輸 、奈米元件 、第一原理計算 、密度泛函理論 、非平衡格林函數理論 |
Keywords (in English): | Indium Selenide, Graphene, 2D Materials, Heterostructures, Quantum Transport, Nanodevices, Ab Initio Calculations, DFT, NEGF |
DOI URL: | http://doi.org/10.6345/NTNU201900057 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 222 Downloads: 1 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
這項研究是針對一系列由單層硒化銦(SL-InSe)和單層石墨烯(SLG)組成的凡德瓦異質結構所進行的第一原理研究。研究過程中,依照硒化銦與石墨烯層間不匹配(Mismatch)的邊界形貌將一系列異質結構量子元件劃分成兩類,以探究其性質差異並進行計算。
本研究關注的是硒化銦-石墨烯異質結構的量子傳輸特性,所有計算模擬的理論基礎結合了密度泛函理論(DFT)與Keldysh非平衡格林函數(NEGF)理論。進階的量子傳輸計算由Nanodcal完成,Nanodcal是一種基於NEGF-DFT理論方法的計算工具,本研究中使用的所有建模與計算工具包括:VASP,VESTA,Device Studio和Nanodcal。研究結果呈現出所選系列中硒化銦-石墨烯異質結構的量子傳輸趨勢。
This research is demonstrated for a ab initio study on a series of few-layered van der Waals heterostructures composed of single-layer (SL) indium selenide (InSe) and single-layer Graphene (SLG). The series of SL-InSe/SLG heterostructures contains two groups of bi-layer mismatched InSe-Graphene heterojunctions. This study focus on quantum transport properties of InSe-Graphene heterojunctions, and all calculations are based on density functional theory (DFT) simulations combined with the Keldysh non-equilibrium Green's function (NEGF) method. Advanced transport calculations are done by Nanodcal, a powerful tool based on NEGF-DFT, and all computational tools used in this study include VASP, VESTA, Device Studio, and Nanodcal. Our results highlight the tendency of quantum transport in each kind of bi-layer InSe-Graphene heterostructures.
[1] D. A. Bandurin , A. V. Tyurnina and G. L. Yu , Nat. Nanotechnol., 2017, 12 , pp. 223-227. DOI: 10.1038/nnano.2016.242
[2] J. F. Sánchez-Royo et al. Nano Res., 2014, 7, pp. 1556-1568. DOI: 10.1007/s12274-014-0516-x
[3] G. W. Mudd et al. Sci. Rep., 2016, 6, 39619. DOI: 10.1038/srep39619
[4] S. A. Svatek et al. J. Phys.: Conf. Ser., 2015, 647 012001. DOI: 10.1088/1742-6596/647/1/012001
[5] S. J. Magorrian, V. Zólyomi, and V. I. Fal'ko, Phys. Rev. B, 2016, 94, 245431. DOI: 10.1103/physrevb.94.245431
[6] P. Hohenberg, W. Kohn, Phys. Rev., 1964, 136(3B), B864. DOI: 10.1103/PhysRev.136.B864
[7] W. Kohn, L.J. Sham, Phys. Rev., 1965, 137, A1697. DOI: 10.1103/PhysRev.137.A1697
[8] J.R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. Lett., 1994, 72, pp. 1240-1243. DOI: 10.1103/PhysRevLett.72.1240
[9] D.C. Langreth, M.J. Mehl, Phys. Rev. B., 1983, 28, pp. 1809-1834. DOI: 10.1103/PhysRevB.28.1809
[10] B. B. Laird, R. B. Ross, and T. Ziegler, Eds., Chemical Applications of Density-Functional Theory., 1996, ACS Symposium series, Chapter 30, pp. 453-462. DOI: 10.1021/bk-1996-0629.ch030
[11] Κ. Burke, J. P. Perdew, and M. Levy, in Modern Density Functional Theory: A Tool for Chemistry, 1995, J. M. Seminario and P. Politzer, Eds. Elsevier, Amsterdam. DOI: 10.1007/978-1-4899-0316-7_7
[12] J. P. Perdew, K. Burke, and M. Ernzerhof Phys. Rev. Lett., 1996, 77, pp. 3865-3868. DOI: 10.1103/PhysRevLett.78.1396
[13] L. V. Keldysh, Sov. Phys. JETP, 1965, 20(4), pp. 1018-1026. http://www.jetp.ac.ru/cgi-bin/dn/e_020_04_1018.pdf
[14] S. Datta, Electronic Transport in Mesoscopic Systems, 1995, Cambridge University Press, Cambridge.
[15] S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport, 2012, World Scientific, Singapore. http://www.nanohub.org/courses/FoN1
[16] A. P. Jauho, Introduction to the Keldysh Nonequilibrium Green Function Technique, https://nanohub.org/resources/1877
[17] S. Datta, Superlattices and Microstructures, 2000, 28, 4, pp. 253-278. DOI: 10.1006/spmi.2000.0920
[18] J. Hafner, J. Comput. Chem., 2008, 29, pp. 2044-2078. DOI: 10.1002/jcc.21057
[19] J. Taylor, H. Guo, J. Wang, Phys. Rev. B, 2001, 63, 205407. DOI: 10.1103/PhysRevB.63.245407
[20] Nanoacademic Technologies, http://nanoacademic.ca
[21] Y. Xue, S. Datta, M.A. Ratner, Chem. Phys.,2002, 281, 151. DOI: 10.1016/S0301-0104(02)00446-9
[22] R Landauer, J. Phys.: Condens. Matter, 1989, 1, pp. 8099-8110. DOI: 10.1088/0953-8984/1/43/011
[23] A. Pecchia and A. Di Carlo, Rep. Prog. Phys., 2004, 67, pp. 1497-1561. DOI: 10.1088/0034-4885/67/8/R04
[24] J. Taylor, H. Guo and J. Wang, Phys. Rev. B.,2001, 63, 245407. DOI: 10.1103/PhysRevB.63.245407
[25] P. Pulay, J. Comput. Chem., 1982, 3(4), pp. 556-560. DOI: 10.1002/jcc.540030413
[26] P. Pulay, Chem. Phys. Lett., 1980, 73, pp. 393-398. DOI: 10.1016/0009-2614(80)80396-4
[27] W. Feng, W. Zheng, W. Cao and P. Hu, Adv. Mater., 2014, 26, pp. 6587-6593 DOI: 10.1039/c7cp07270h