Basic Search / Detailed Display

Author: 陳昱潔
Chen, Yu-Jie
Thesis Title: 長葉木薑子杯狀蟲癭捕光複合體分析
Analysis on light-harvesting complexes in the cup-shaped gall of Litsea acuminata
Advisor: 張永達
Chang, Yung-Ta
楊棋明
Yang, Chi-Ming
Degree: 碩士
Master
Department: 生命科學系
Department of Life Science
Thesis Publication Year: 2016
Academic Year: 104
Language: 中文
Number of pages: 40
Keywords (in Chinese): 捕光蛋白複合體光合作用蟲癭長葉木薑子
Keywords (in English): gall, light harvesting complex protein, Litsea acuminata, photosynthesis
DOI URL: https://doi.org/10.6345/NTNU202204731
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 105Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 生物之間有許多交互作用,而造癭生物與其寄主植物之間關係是相當特別有趣的例子,到目前為止兩者演化的過程還未被釐清。癭為造癭生物在其寄主植物上產卵、取食等造成的不正常組織。而癭組織多半呈現綠色或紅色,過去研究多為形態、組織學¬¬¬¬、分類、DNA、光合作用率等方面,而光合作用蛋白相關的研究相對較少。
    本實驗研究物種長葉木薑子(Litsea acuminata)為台灣樟科(Lauraceae)木薑子屬(Litsea sp.)植物,分布於海拔400至2000公尺,而位於台灣北部陽明山國家公園二子坪步道之植株上有為數不少癭蚋(Bruggmanniella sp.)所產之杯狀(cup-shaped)蟲癭,蟲癭發生期為冬季十月至隔年三月之間,初期為綠色,如杯子狀,中間具凹陷,晚期轉為紫紅色,蟲癭成熟。
    本研究利用西方墨點法(Western Blot)進行蟲癭之光系統Ⅰ和光系統Ⅱ之捕光蛋白複合體(Light-harvesting complexes)以及總蛋白含量檢測,並與無癭葉與有癭葉進行比較,以了解是否於杯狀蟲癭相較於無癭葉之光合作用蛋白具有含量較低及部分缺失之情形,並釐清是否蟲癭的產生也會對被造癭之葉片產生影響而使受感染的葉片造成本質上的改變。
    結果顯示蟲癭的總蛋白含量相較於無癭葉減少約50%,而有癭葉與無癭葉則無顯著差異。光系統I捕光複合體分析顯示蟲癭所含的CPIA、RCIA、RCIB皆較無癭葉低,而在有癭葉上則是沒有檢測到。光系統II捕光複合體分析顯示蟲癭內所含的CP47較無癭葉低,有癭葉同樣沒有檢測到;而Lhcb4、Lhcb5含量由高至低依序為無癭葉、有癭葉、蟲癭。前人研究中顯示無癭葉與有癭葉的光合作用率並無顯著差異,蟲癭自身光合作用率低可能是由於多種捕光複合體缺失所導致,而有癭葉部分捕光複合體受影響的原因則待後續研究進行解析。

    There are many interactions between organisms, and gall-induced organisms and their host plant have very special and interesting relationship, but their evolution of process are not clearly until now. Gall is gall-induced organism form abnormal tissues on their host plant by oviposition or feeding, and gall usually appear in green or red color. On the past, there are many research in the morphology, histological, taxonomy, DNA and photosynthesis rate of gall. The photosynthesis relative proteins retain to be studied.
    In this study, we used Litsea acuminata as material to exam, which is belong to Litsea of Lauraceae, it’s common at low altitude of Taiwan. It is located 400~2,000 m above sea level (asl) in Taiwan. There has many cup-shaped gall induced by cecidomyiidae midges at Erzihping trail of Yangmingshan National Park in north Taiwan. The galls appear on October to March, it appears green at the beginning, turn dark red as they mature and the insect eclosion and flying out.
    We used Western Blot to detect the light-harvesting complexes and the concentration of total protein of non-galled leaves, galled leaves and galls, and compare the relative abundance of them. And to clarify if the gall-induction will influence the galled leaves.
    The result showed that the total protein of gall has lower than non-galled leaves about 50%, and the galled leaves are not different from non-gall leaves. On the analyzed of light harvesting complexes of photosystem I, there are lower content of CPIA, RCIA and RCIB on the galls than non-galled leaves, and didn’t detect on galled leaves. On the analyzed of light harvesting complexes of photosystem II, the protein of CP47 on the galls was lower than non-galled leaves, and didn’t detect on galled leaves. The protein content of Lhcb4 and Lhcb5 from high to low are non-galled leaves, galled leaves and galls.
    On past study, there were not different of photosynthesis rate between non-galled leaves and galled leaves. The photosynthesis rate was lower on the gall may due to the deficiency of light harvesting complexes. The reason of lower content of light harvesting complexes on the galled leaves retain to be study in the future.

    誌謝 ii 中文摘要 iv 英文摘要 vi 第一章 緒論 1 一、 癭的發生 1 二、 植物的光合作用與捕光蛋白複合體 3 三、 癭與寄主的光合作用 5 第二章 研究目的與材料方法 9 一、 研究目的 9 二、 試驗材料 10 三、 試驗處理 10 四、 生態觀察 11 五、 分析項目 11 (一) 總蛋白 11 (二) 捕光蛋白 12 六、 統計方法 13 第四章 結果與討論 15 一、 總蛋白含量 15 二、 光合作用捕光複合體缺失 15 三、 相關性比較 18 四、 生態觀察 19 第五章 結論與展望 21 第六章 參考文獻 23

    呂福原、歐辰雄、呂金誠。1997。台灣樹木解說(一)。行政院農業委員會。95頁。
    林聖豐。2011。長葉木薑子葉片上多型性蟲癭的造癭癭蚋之生物系統分類。國立中興大學昆蟲學研究所碩士論文。
    胡卓逸、孫承琦。1990。蛋白質定量方法的演進。生物化學與生物物理進展 17:23-26頁。
    楊棋明、陳榮銳。1993。蛋白質磷酸化調控高等植物類囊膜上葉綠餅的摺疊機制。中華農學會161:33-46頁。
    楊淑燕、陳明義、楊正澤。2000。台灣的植物癭。行政院農業委員會。4-98頁
    Álvarez, R., González-Sierra, S., Candelas, A., & Martinez, J.-J. I. (2013). Histological study of galls induced by aphids on leaves of Ulmus minor: Tetraneura ulmi induces globose galls and Eriosoma ulmi induces pseudogalls. Arthropod-Plant Interactions, 7, 643-650.
    Andersen, P. C., & Mizell-III, R. F. (1987). Physiological Effects of Galls Induced by Phylloxera notabilis (Homoptera: Phylloxeridae) on Pecan Foliage. Environmental Entomology, 16, 264-268.
    Andersson, J., Walters, R. G., Horton, P., & Jansson, S. (2001). Antisense Inhibition of the Photosynthetic Antenna Protein CP29 and CP26: Implications for the Mechanism of Protective Energy Dissipation. The Plant Cell, 13, 1193-1204.
    Barash, I., & Manulis-Sasson, S. (2007). Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. TRENDS in Microbiology, 15, 539-545.
    Ben-Shem, A., Frolow, F., & Nelson, N. (2003). Crystal structure of plant photosystem I. Nature, 426, 630-635.
    Bianchi, S. d., Ballottari, M., Dall'Osto, L., & Bassi, R. (2010). Regulation of plant light harvesting by thermal dissipation of excess energy. Biochemical Society transactions, 38, 651-660.
    Blankenship, R. E. (2002). Molecular Mechanisms of Photosynthesis. Oxford/Malden: Blackwell Science Ltd.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
    Caffarri, S., Kouřil, R., Kereïche, S., Boekema, E. J., & Croce, R. (2009). Functional architecture of higher plant photosystem II supercomplexes. The EMBO Journal, 28, 3052-3063.
    Dénarié, J., Debellé, F., & Promé, J. C. (1996). Rhizobium lipo-chitooligos accharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annual Review of Biochemistry, 65, 503-535.
    Fay, P. A., Hartnett, D. C., & Knapp, A. K. (1993). Increased photosynthesis and water potentials in Silphium integrifolium galled by cynipid wasps. Oecologia, 1993, 114-120.
    Florentine, S. K., Raman, A., & Dhileepan, K. (2005). Effects of gall induction by Epiblema strenuana on gas exchange, nutrients, and energetics in Parthenium hysterophorus. Journal of the International Organization for Biological Control, 50, 787-801.
    Haiden, S. A., Hoffmann, J. H., & Cramer, M. D. (2012). Benefit of photosynthesis for insects in galls. Oecologia, 170, 987-997. doi:10.1007/s00442-012-2635-1
    Hall, D. O., & Rao, K. K. (1999). Photosynthesis (Vol. 6th Edition). Cambridge: Cambridge university press.
    Huang, M. Y., Huang, W. D., Chou, H. M., Chen, C. C., Chen, P. J., Chang, Y. T., & Yang, C. M. (2015). Structural, biochemical, and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata. BMC Plant Biology, 15, 61-73.
    Larson, K. C. (1998). The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Oecologia, 115, 161-166.
    Lawlor, D. W. (1987). Photosynthesis: metabolism, control and physiology. New York: Longman Scientific & Technical. pp. 9-10.
    Li, X. P., BjoÈrkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S., & Niyogi, K. K. (2000). A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 403, 391-395.
    Markwell, J. (1986). Photosynthesis: energy transduction: a practical approach (M. F. Hipkina & N. R. Baker Eds.). Oxford‧Washington DC: IRL PRESS. 31 pp.
    Moseley, C. T., Cramer, M. D., Kleinjan, C. A., & Hoffmann, J. H. (2009). Why does Dasineura dielsi -induced galling of Acacia cyclops not impede vegetative growth? Journal of Applied Ecology, 46, 214-222.
    Nabity, P. D., Hausa, M. J., Berenbaumb, M. R., & Evan H. DeLuciaa, b. (2013). Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Proceedings of the National Academy of Sciences of the United States of America, 110, 16663–16668.
    Nyman, T., Widmer, A., & Roininen, H. (2000). Evolution of gall morphology and host-plant relationships in willow-feeding sawflies. Evolution, 54(2), 526-533.
    Patankar, R., Quinton, W. L., & Baltzer, J. L. (2013). Permafrost-driven differences in habitat quality determine plant response to gall-inducing mite herbivory. Journal of Ecology, 101, 1042-1052.
    Patankar, R., Thomas, S. C., & Smith, S. M. (2011). A gall-inducing arthropod drivers declines in canopy tree photosynthesis. Oecologia, 167, 701-709.
    Paulsen, H. (1995). Chlorophyll a/b-binding proteins. Phorochemistp and Photobiology, 62.
    Petro, R., Madoffe, S. S., Iddi, S., & Mugasha, W. A. (2015). Impact of Eucalyptus gall wasp, Leptocybe invasa infestation on growth and biomass production of Eucalyptus grandis and E. saligna seedlings in Tanzania. International Journal of Pest Management, 61, 220-227.
    Prade, P., Diaz, R., Vitorino, M. D., James P. Cuda, P., Kumar, B. G., & Overholt, W. A. (2016). Galls induced by Calophya latiforceps (Hemiptera: Calophyidae) reduce leaf performance and growth of Brazilian peppertree. Biocontrol Science and Technology, 26, 23-34.
    Price, P. W., Fernandes, G. W., & Waring, G. W. (1987). Adaptive Nature of Insect Galls. Environmental Entomology, 16, 15-24.
    Price, P. w., Waring, G. l., & Fernandes, G. W. (1986). Hypotheses on the adaptlve nature of galls. Proceedings of the Entomological Society of Washington, 88(2), 361-363.
    Rocha, S., Branco, M., Boas, L. V., Almeida, M. H., Protasov, A., & Mendel, Z. (2013). Gall induction may benefit host plant: a case of a gall wasp and eucalyptus tree. Tree physioogy, 33, 388-397.
    Smith, B. N. (1996). Handbook of Photosynthesis: Marcel Dekker.
    Stone, G. N., & Schönrogge, K. (2003). The adaptive significance of insect gall morphology. TRENDS in Ecology and Evolution, 18, 512-522.
    Xu, Y. H., Liu, L., Liu, Z. Q., Jiang, S. C., Shen, Y. Y., Wang, X. F., & Zhang, D. P. (2012). Light-harvesting chlorophyll /b-binding proteins are required for stomatal reponse to abscisic acid in Arabidopsis. Journal of Experimental Botany, 63, 1095-1106.
    Yamaguchi, H., Tanaka, H., Hasegawa, M., Tokuda, M., Asami, T., & Suzuki, Y. (2012). Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytologist, 196, 586-595.
    Yang, C. M., Yang, M. M., Hsu, J. M., & Jane, W. N. (2003). Herbivorous insect causes deficiency of pigment-protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaf. Botanical Bulletin of Academia Sinica, 44, 315-321.
    Yang, C. M., Yang, M. M., Huang, M. Y., Hsu, J. M., & Jane, W. N. (2007). Life time deficiency of photosynthetic pigment-protein complexes CP1, A1, AB1, and AB2 in two cecidomyiid galls derived from Machilus thunbergii leaves. PHOTOSYNTHETICA, 45(4), 589-593.
    Yang, M. M., Tung, G. S., Salle, J. L., & Wu, M. L. (2004). Outbreak of erythrina gall wasp (Hymenoptera: Eulophidae) on Erythrina spp. (Fabaceae) in Taiwan. 植物保護學會會刊, 46, 391-396.

    無法下載圖示 This full text is not authorized to be published.
    QR CODE