Basic Search / Detailed Display

Author: 丁世峰
Ting, Shih-Feng
Thesis Title: 缺血預處理後不同休息時間對有氧能力的影響
Effects of different rest duration after ischemic preconditioning on aerobic capacity
Advisor: 鄭景峰
Cheng, Ching-Feng
Degree: 碩士
Master
Department: 運動競技學系
Department of Athletic Performance
Thesis Publication Year: 2019
Academic Year: 107
Language: 中文
Number of pages: 58
Keywords (in Chinese): 遞增負荷運動肌肉氧飽和度熱身活動再灌注
Keywords (in English): graded exercise test, muscle oxygenation, warm-up, reperfusion
DOI URL: http://doi.org/10.6345/NTNU201900374
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 163Downloads: 54
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 目的:本研究旨在探討缺血預處理 (ischemic preconditioning, IPC) 後不同休息時間對有氧能力的影響。方法:以12名大專受過訓練之男性運動員為受試者,須接受1次的控制處理 (control, CON),再以隨機分配與平衡次序的實驗設計接受2次IPC。在首次實驗中,受試者於功率腳踏車上執行遞增負荷運動測驗 (graded exercise test, GXT) 以作為CON;在後續實驗中,受試者須在接受IPC後休息5分鐘 (IPC5) 或30分鐘 (IPC30),再執行GXT。運動測驗過程中,量測攝氧峰值 (peak oxygen uptake, VO2peak)、功率峰值 (peak power output, Wpeak)、衰竭時間 (time to exhaustion, TTE)、第一換氣閾值 (first ventilatory threshold, VT1)、第二換氣閾值 (second ventilatory threshold, VT2) 與換氣閾值對應之輸出功率 (wVT1 和wVT2),並監控肌肉氧飽和度的改變量,包括含氧血紅素 (change in oxyhemoglobin, ΔO2Hb)、去氧血紅素 (change in deoxyhemoglobin, ΔHHb)、總血紅素 (change in total hemoglobin, ΔtHb) 及組織氧飽和指標 (change in tissue saturation index, ΔTSI)。結果:VO2peak、VT1、VT2、wVT1 與wVT2在3種處理間沒有顯著差異。然而,IPC5 與IPC30之Wpeak (IPC5 vs. IPC30 vs. CON, 280.3 ± 39.0 vs. 282.4 ± 38.0 vs. 269.3 ± 31.4 W) 與TTE (IPC5 vs. IPC30 vs. CON, 740.3 ± 77.8 vs. 744.5 ± 76.0 vs. 718.0 ± 62.7 s) 顯著高於CON (p < .05)。ΔO2Hb在VT1、VT2與衰竭時,以及ΔtHb在VT2時,IPC5顯著高於CON。此外,IPC5在VT2與衰竭時之ΔO2Hb與ΔtHb顯著高於IPC30。結論:缺血預處理後短與長休息時間均能促進有氧能力,其中IPC5之效益可能與血流量上升有關。

    Purpose: To investigate the effects of different timing between ischemic preconditioning (IPC) and exercise test on aerobic capacity. Methods: Twelve college male athletes were recruited in this study, and were required to complete a control trial (CON) and 2 randomized crossover IPC trials. During the first trial, participants performed the graded exercise test (GXT) on a cycling ergometer as the CON. During the following trials, participants were asked to rest 5 min (IPC5) or 30 min (IPC30) after IPC before conducting the GXT. Peak oxygen uptake (VO2peak), peak power output (Wpeak), time to exhaustion (TTE), first and second ventilatory thresholds (VT1 and VT2) against the power output (wVT1 and wVT2) were measured during GXT. Changes in muscle oxygenation of quadriceps, including oxyhemoglobin (ΔO2Hb), deoxyhemoglobin (ΔHHb), total hemoglobin (ΔtHb) and tissue saturation index (ΔTSI), were continuously monitored throughout all trials. Results: No significant differences were found in VO2peak, VT1, VT2, wVT1 and wVT2 among the three conditions; however, Wpeak (IPC5 vs. IPC30 vs. CON, 280.3 ± 39.0 vs. 282.4 ± 38.0 vs. 269.3 ± 31.4 W) and TTE (IPC5 vs. IPC30 vs. CON, 740.3 ± 77.8 vs. 744.5 ± 76.0 vs. 718.0 ± 62.7 s) in IPC were significantly higher than those in CON (p < .05). The ΔO2Hb at VT1, VT2, and VO2peak, as well as ΔtHb at VT2 was significantly higher in IPC5 than those in CON. Furthermore, IPC5 yielded significantly higher ΔO2Hb and ΔtHb at VT2 and VO2peak compared with IPC30. Conclusion: Short and long rest duration after IPC might improve aerobic capacity, and the improvement in IPC5 might associate with the increase in muscular blood flow.

    中文摘要 i 英文摘要 ii 謝誌 iii 目次 iv 表次 vii 圖次 vii 第壹章 緒論 1 第一節 前言 1 第二節 研究的重要性 3 第三節 研究目的 3 第四節 研究假設 3 第五節 研究範圍與限制 4 第六節 名詞操作性定義 4 第貳章 文獻探討 7 第一節 缺血預處理的介紹 7 第二節 缺血預處理的機制 8 第三節 缺血預處理後休息時間長度對有氧能力的影響 11 第四節 本章總結 16 第參章 研究方法 17 第一節 研究對象 17 第二節 實驗流程設計 17 第三節 實驗日期與地點 18 第四節 實驗流程 18 第五節 實驗方法與步驟 20 第六節 資料處理與統計方法 27 第肆章 結果 28 第一節 受試者基本資料 28 第二節 缺血預處理後不同休息時間對有氧能力及自覺感受之影響 29 第三節 缺血預處理後不同休息時間對肌肉氧飽和度的影響 35 第伍章 討論 38 第一節 缺血預處理後休息時間長度對有氧能力的影響 38 第二節 缺血預處理後休息時間長度對肌肉氧飽和度的影響 42 第三節 綜合討論 45 第四節 結論與建議 47 引用文獻 48 附錄 55 附錄一 受試者健康狀況調查表 55 附錄二 受試者須知 56 附錄三 受試者同意書 57 附錄四 實驗紀錄表 58

    Addison, P. D., Neligan, P. C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., ... Pang, C. Y. (2003). Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. American Journal of Physiology-Heart and Circulatory Physiology, 285(4), 1435-1443. doi: 10.1152/ajpheart.00106.2003

    Amann, M., Eldridge, M. W., Lovering, A. T., Stickland, M. K., Pegelow, D. F., & Dempsey, J. A. (2006). Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. The Journal of Physiology, 575(3), 937-952. doi: 10.1113/jphysiol.2006.113936

    Bailey, T. G., Birk, G. K., Cable, N. T., Atkinson, G., Green, D. J., Jones, H., & Thijssen, D. H. (2012). Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. American Journal of Physiology. Heart and Circulatory Physiology, 303(5), 533-538. doi: 10.1152/ajpheart.00272.2012

    Bailey, T. G., Jones, H., Gregson, W., Atkinson, G., Cable, N. T., & Thijssen, D. H. (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine and Science in Sports and Exercise, 44(11), 2084-2089. doi: 10.1249/MSS.0b013e318262cb17

    Barbosa, T. C., Machado, A. C., Braz, I. D., Fernandes, I. A., Vianna, L. C., Nobrega, A. C., & Silva, B. M. (2015). Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian Journal of Medicine and Science in Sports, 25(3), 356-364. doi: 10.1111/sms.12229

    Barnes K. R., Kilding A. E. (2015). Running economy: Measurement, norms, and determining factors. Sports Medicine - Open, 1(1), 1-8. doi: 10.1186/s40798-015-0007-y

    Beaver, W. L., Wasserman, K., & Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. Journal of Applied Physiology (1985), 60(6), 2020-2027.

    Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.

    Calbet, J. A., Lundby, C., Sander, M., Robach, P., Saltin, B., & Boushel, R. (2006). Effects of ATP-induced leg vasodilation on VO2peak and leg O2 extraction during maximal exercise in humans. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 291(2), 447-453. doi: 10.1152/ajpregu.00746.2005

    Candilio, L., Malik, A., & Hausenloy, D. J. (2013). Protection of organs other than the heart by remote ischemic conditioning. Journal of Cardiovascular Medicine, 14(3), 193-205. doi: 10.2459/JCM.0b013e328359dd7b

    Carroll, C. M., Carroll, S. M., Overgoor, M. L., Tobin, G., & Barker, J. H. (1997). Acute ischemic preconditioning of skeletal muscle prior to flap elevation augments muscle-flap survival. Plastic and Reconstructive Surgery, 100(1), 58-65.

    Cheung, M. M., Kharbanda, R. K., Konstantinov, I. E., Shimizu, M., Frndova, H., Li, J., ... Redington, A. N. (2006). Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: First clinical application in humans. Journal of the American College of Cardiology, 47(11), 2277-2282.

    Clevidence, M. W., Mowery, R. E., & Kushnick, M. R. (2012). The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. European Journal of Applied Physiology, 112(10), 3649-3654. doi: 10.1007/s00421-012-2345-5

    Cocking, S., Wilson, M. G., Nichols, D., Cable, N. T., Green, D. J., Thijssen, D. H. J., & Jones, H. (2017). Is there an optimal ischemic preconditioning dose to improve cycling performance? International Journal of Sports Physiology and Performance, 5(28), 1-25. doi: 10.1123/ijspp.2017-0114

    Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., & Caria, M. A. (2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen consumption in humans. Journal of Applied Physiology, 111(2), 530- 536. doi: 10.1152/japplphysiol.00266.2011

    Cruz, R. S., de Aguiar, R. A., Turnes, T., Pereira, K. L., & Caputo, F. (2015). Effects of ischemic preconditioning on maximal constant-load cycling performance. Journal of Applied Physiology, 119(9), 961-967. doi: 10.1152/japplphysiol.00498.2015

    Cruz, R. S., Pereira, K. L., Lisbôa, F. D., & Caputo, F. (2017). Could small-diameter muscle afferents be responsible for the ergogenic effect of limb ischemic preconditioning? Journal of Applied Physiology (1985), 122(3), 718-720. doi: 10.1152/japplphysiol.00662.2016

    da Mota, G. R., & Marocolo, M. (2016). The effects of ischemic preconditioning on human exercise performance: A counterpoint. Sports Medicine, 46(10), 1575-1576. doi: 10.1007/s40279-016-0595-9

    Dawson, E. A., Green, D. J., Cable, N. T., & Thijssen, D. H. (2013). Effects of acute exercise on flow-mediated dilatation in healthy humans. Journal of Applied Physiology, 115(11), 1589-1598. doi: 10.1152/japplphysiol.00450.2013

    de Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European Journal of Applied Physiology, 108(1), 141-146. doi: 10.1007/s00421-009-1195-2

    Ganesan, G., Cotter, J. A., Reuland, W., Cerussi, A. E., Tromberg, B. J., & Galassetti, P. (2015). Effect of blood flow restriction on tissue oxygenation during knee extension. Medicine and science in sports and exercise, 47(1), 185-193. doi: 10.1249/mss.0000000000000393

    Gibson, N., White, J., Neish, M., & Murray, A. (2013). Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. International Journal of Sports Physiology and Performance, 8(6), 671-676.

    Gifford J. R., Garten R. S., Nelson A. D., Trinity J. D., Layec G, Witman M. A., … Richardson R. S. (2016). Symmorphosis and skeletal muscle V̇O2max: In vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. The Journal of Physiology, 594(6), 1741-1751.

    Hamlin, M. J., Marshall, H. C., Hellemans, J., & Ainslie, P. N. (2010). Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: A preliminary report. Applied Physiology, Nutrition, and Metabolism, 35(4), 548-559. doi: 10.1139/h10-044

    Hausenloy, D. J., & Yellon, D. M. (2010). The second window of preconditioning (SWOP) where are we now? Cardiovascular Drugs and Therapy, 24(3), 235-254. doi: 10.1007/s10557-010-6237-9

    Heusch, G. (2015). Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circulation Research, 116(4), 674-699. doi: 10.1161/CIRCRESAHA.116.305348

    Heusch, G., Boengler, K., & Schulz, R. (2010). Inhibition of mitochondrial permeability transition pore opening: The holy grail of cardioprotection. Basic Research in Cardiology, 105(2), 151-154. doi: 10.1007/s00395-009-0080-9

    Hittinger, E. A., Maher, J. L., Nash, M. S., Perry, A. C., Signorile, J. F., Kressler, J., & Jacobs, K. A. (2015). Ischemic preconditioning does not improve peak exercise capacity at sea level or simulated high altitude in trained male cyclists. Applied Physiology, Nutrition, and Metabolism, 40(1), 65-71. doi: 10.1139/apnm-2014-0080

    Horiuchi, M. (2017). Ischemic preconditioning: Potential impact on exercise performance and
    underlying mechanisms. The Journal of Sports Medicine and Physical Fitness, 6(1), 15-23. doi: 10.7600/jpfsm.6.15

    Horiuchi, M., Endo, J., & Thijssen, D. H. (2015). Impact of ischemic preconditioning on functional sympatholysis during handgrip exercise in humans. Physiological Reports, 3(2). doi: 10.14814/phy2.12304

    Incognito, A. V., Burr, J. F., & Millar, P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Medicine, 46(4), 531-544. doi: 10.1007/s40279- 015-0433-5

    Inserte, J., Barba, I., Poncelas-Nozal, M., Hernando, V., Agullo, L., Ruiz-Meana, M., & Garcia- Dorado, D. (2011). cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. Journal of Molecular and Cellular Cardiology, 50(5), 903-909. doi: 10.1016/j.yjmcc.2011.02.013

    James, C. A., Willmott, A. G., Richardson, A. J., Watt, P. W., & Maxwell, N. S. (2016). Ischemic preconditioning does not alter the determinants of endurance running performance in the heat. European Journal of Applied Physiology, 116(9), 1735-1745. doi: 10.1007/s00421-016-3430-y

    Juhaszova, M., Zorov, D. B., Kim, S.-H., Pepe, S., Fu, Q., Fishbein, K. W., ... Sollott, S. J. (2004). Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation, 113(11), 1535-1549. doi: 10.1172/jci19906

    Kaur, G., Binger, M., Evans, C., Trachte, T., Van Guilder, G. P. (2017). No influence of ischemic preconditioning on running economy. European Journal of Applied Physiology, 117(2), 225-235. doi: 10.1007/s00421-016-3522-8

    Keller, D. M., Ogoh, S., Greene, S., Olivencia-Yurvati, A., & Raven, P. B. (2004). Inhibition of KATP channel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle. The Journal of Physiology, 561(1), 273-282. doi: 10.1113/jphysiol.2004.071993

    Kido, K., Suga, T., Tanaka, D., Honjo, T., Homma, T., Fujita, S., ... Isaka, T. (2015). Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiological Reports, 3(5). doi: 10.14814/phy2.12395.

    Kime, R., Hamaoka, T., Sako, T., Murakami, M., Homma, T., Katsumura, T., & Chance, B. (2003). Delayed reoxygenation after maximal isometric handgrip exercise in high oxidative capacity muscle. European Journal of Applied Physiology, 89(1), 34-41. doi: 10.1007/s00421-002-0757-3

    Kjeld, T., Rasmussen, M. R., Jattu, T., Nielsen, H. B., & Secher, N. H. (2014). Ischemic preconditioning of one forearm enhances static and dynamic apnea. Medicine and science in sports and exercise, 46(1), 151-155. doi: 10.1249/MSS.0b013e3182a4090a

    Kristiansen, S. B., Henning, O., Kharbanda, R. K., Nielsen-Kudsk, J. E., Schmidt, M. R., Redington, A. N., ... Botker, H. E. (2005). Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism. American Journal of Physiology-Heart and Circulatory Physiology, 288(3), 1252-1256. doi: 10.1152/ajpheart.00207.2004

    Kuipers, H., Verstappen, F. T., Keizer, H. A., Geurten, P., & van Kranenburg, G. (1985). Variability of aerobic performance in the laboratory and its physiologic correlates. International Journal of Sports Medicine, 6(4), 197-201. doi: 10.1055/s-2008-1025839

    Kuzuya, T., Hoshida, S., Yamashita, N., Fuji, H., Oe, H., Hori, M., ... Tada, M. (1993). Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circulation Research, 72(6), 1293-1299

    Lambert, E. A., Thomas, C. J., Hemmes, R., Eikelis, N.,
    Pathak, A., Schlaich, M. P., & Lambert,G. W. (2016). Sympathetic nervous response to ischemia-reperfusion injury in humans is altered with remote ischemic preconditioning. American Journal of Physiology. Heart and Circulatory Physiology, 311(2), 364-370. doi: 10.1152/ajpheart.00369.2016

    Lawson, C. S., & Downey, J. M. (1993). Preconditioning: State of the art myocardial protection. Cardiovascular Research, 27(4), 542-550.

    Lecour, S. (2009). Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? Journal of Molecular and Cellular Cardiology, 47(1), 32-40. doi: 10.1016/j.yjmcc.2009.03.019

    Lintz, J. A., Dalio, M. B., Joviliano, E. E., & Piccinato, C. E. (2013). Ischemic pre and postconditioning in skeletal muscle injury produced by ischemia and reperfusion in rats. Acta Cirurgica
    Brasileira, 28(6), 441-446.

    Lisbôa F. D., Turnes T., Cruz R. S., Raimundo J. A., Pereira G. S., Caputo F. (2017). The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance. Journal of Science and Medicine in Sport, 20(5), 507-511. doi: 10.1016/j.jsams.2016.09.008

    Loukogeorgakis S. P., Panagiotidou A. T., Broadhead M. W., Donald A., Deanfield J. E., MacAllister R. J. (2005). Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: Role of the autonomic nervous system. Journal of the American College of Cardiology, 46(3), 450-456.

    Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136.

    Oueslati, F., Girard, O., Tabka, Z., & Ahmaidi, S. (2016). Excess VO2 during ramp exercise is positively correlated to intercostal muscles deoxyhemoglobin levels above the gas exchange threshold in young trained cyclists. Respiratory Physiology and Neurobiology, 228, 83-90. doi: 10.1016/j.resp.2016.03.010

    Pain, T., Yang, X. M., Critz, S. D., Yue, Y., Nakano, A., Liu, G. S., ... Downey, J. M. (2000). Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circulation Research, 87(6), 460-466.

    Pang, C. Y., Yang, R. Z., Zhong, A., Xu, N., Boyd, B., & Forrest, C. R. (1995). Acute ischemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovascular Research, 29(6), 782-788.

    Paradis-Deschenes, P., Joanisse, D. R., & Billaut, F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Applied Physiology, Nutrition, and Metabolism, 41(9), 938-944. doi: 10.1139/apnm-2015-0561

    Paradis-Deschenes, P., Joanisse, D. R., & Billaut, F. (2017). Ischemic preconditioning improves time-trial performance at moderate altitude. Medicine and science in sports and exercise, 50(3), 533-541. doi: 10.1249/mss.0000000000001473

    Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A., & Whittaker, P. (1993). Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 87(3), 893-899.

    Rassaf T., Totzeck M., Hendgen-Cotta U. B., Shiva S., Heusch G., Kelm M. (2014). Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circulation Research, 114(10), 1601-1610.

    Reimer, K. A., Murry, C. E., Yamasawa, I., Hill, M. L., & Jennings, R. B. (1986). Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. The American Journal of Physiology, 251(6), 1306-1315.

    Riechman, S. E., Zoeller, R. F., Balasekaran, G., Goss, F. L., & Robertson, R. J. (2002). Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. Journal of Sports Sciences, 20(9), 681-687.

    Rupp, T., & Perrey, S. (2008). prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153-163. doi: 10.1007/s00421-007-0568-7

    Sabino-Carvalho, J. L., Lopes, T. R., Obeid-Freitas, T., Ferreira, T. N., Succi, J. E., Silva, A. C., & Silva, B. M. (2017). Effect of ischemic preconditioning on endurance performance does not surpass placebo. Medicine and Science in Sports and Exercise, 49(1), 124-132. doi: 10.1249/MSS.0000000000001088

    Saito, T., Komiyama, T., Aramoto, H., Miyata, T., & Shigematsu, H. (2004). Ischemic preconditioning improves oxygenation of exercising muscle in vivo. Journal of Surgical Research, 120(1), 111-118. doi: 10.1016/j.jss.2003.12.021

    Salvador, A. F., De Aguiar, R. A., Lisbôa, F. D., Pereira, K. L., Cruz, R. S., & Caputo, F. (2016). Ischemic preconditioning and exercise performance: A systematic review and meta-analysis. International Journal of Sports Physiology and Performance, 11(1), 4-14. doi: 10.1123/ijspp.2015-0204

    Seeger, J. P., Timmers, S., Ploegmakers, D. J., Cable, N. T., Hopman, M. T., & Thijssen, D. H. (2017). Is delayed ischemic preconditioning as effective on running performance during a 5km time trial as acute IPC? Journal of Science and Medicine in Sport, 20(2), 208-212. doi: 10.1016/j.jsams.2016.03.010

    Seyfarth, M., Richardt, G., Mizsnyak, A., Kurz, T., & Schomig, A. (1996). Transient ischemia reduces norepinephrine release during sustained ischemia. Neural preconditioning in isolated rat heart. Circulation Research, 78(4), 573-580.

    Sharma, V., Marsh, R., Cunniffe, B., Cardinale, M., Yellon, D. M., & Davidson, S. M. (2015). From protecting the heart to improving athletic performance-the benefits of local and remote ischemic preconditioning. Cardiovascular Drugs and Therapy, 29(6), 573-588. doi: 10.1007/s10557-015-6621-6

    Slysz, J. T., & Burr, J. F. (2018). Enhanced Metabolic Stress Augments Ischemic Preconditioning for Exercise Performance. Frontiers in physiology, 9, 1621. doi:10.3389/fphys.2018.01621

    Stokfisz, K., Ledakowicz-Polak, A., Zagorski, M., & Zielinska, M. (2017). Ischemic preconditioning-current knowledge and potential future applications after 30 years of experience. Advances in Medical Sciences, 62(2), 307-316. doi: 10.1016/j.advms.2016.11.006

    Tanaka, D., Suga, T., Tanaka, T., Kido, K., Honjo, T., Fujita, S., ... Isaka, T. (2016). Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. International Journal of Sports Medicine, 37(8), 614-618. doi: 10.1055/s-0035-1565141

    Tocco, F., Marongiu, E., Ghiani, G., Sanna, I., Palazzolo, G., Olla, S., ... Crisafulli, A. (2015). Muscle ischemic preconditioning does not improve performance during self-paced exercise. International Journal of Sports Medicine, 36(1), 9-15. doi: 10.1055/s-0034- 1384546

    Vanhatalo, A., Doust, J. H., & Burnley, M. (2007). Determination of critical power using a 3-min all-out cycling test. Medicine and Science in Sports and Exercise, 39(3), 548-555. doi: 10.1249/mss.0b013e31802dd3e6

    Wiggins C. C., Constantini K., Paris H. L., Mickleborough T. D., Chapman R. F. (2019). Ischemic preconditioning, O2 kinetics, and performance in normoxia and hypoxia. Medicine and Science in Sports and Exercise, 51(5), 900-911. doi: 10.1249/MSS.0000000000001882

    Wunsch S. A., Muller-Delp J., Delp M. D. (2000). Time course of vasodilatory responses in skeletal muscle arterioles: role in hyperemia at onset of exercise. American Journal of Physiology-Heart and Circulatory Physiology, 279(4), 1715-1723.

    下載圖示
    QR CODE