Basic Search / Detailed Display

Author: 馬諾勁
Manoj
Thesis Title: 以硝基烯烴化合物合成具有生物活性的含氮氧雜環分子
EXPLORATION OF NITROALKENES TOWARDS THE SYNTHESIS OF BIOACTIVE O, N-HETEROCYCLES
Advisor: 姚清發
Yao, Ching-Fa
Degree: 博士
Doctor
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2014
Academic Year: 102
Language: 英文
Number of pages: 261
Keywords (in Chinese): 硝基烯類4-羥基香豆素色烯酮-3- 羧酸鹽指甲花醌2-胺基呋喃萘醌吲哚硝基烯吲哚硝基烷吲哚四氫喹啉吲哚苯並萘啶
Keywords (in English): Nitroalkenes, 4-hydroxycoumarin, indolylnitroalkene, indolylnitroalkane, indolyltetrahydroquinoline, indolo-benzonaphthyridine
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 105Downloads: 1
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 由於含氮氧雜環分子廣泛的生物和藥物化學潛在的應用使之在合成化學研究中是炙手可熱的議題,因此發展了一個新穎、高效能且低成本的含氮氧雜環的合成方法。
    本篇論文可分為五個章節,第一章概述硝基烯類的合成與應用及其相關文獻。第二章敘述4-羥基香豆素在醇類存在下合成色烯酮-3- 羧酸鹽的衍生物。第三章描述以指甲花醌和硝基烯烴合成2-胺基呋喃萘醌。第四章介紹以三氯化鐵催化吲哚硝基烯類和苯胺衍生物進行C-烷基化反應。第五章敘述dienophiles以三氯化鐵催化合成高取代吲哚四氫喹啉衍生物及其合成應用。

    The development of novel and efficient protocols for the synthesis of O, N -containing heterocyclic compounds is an important area of research in synthetic chemistry due to their versatile biological utility and potential application in medicinal as well as pharmaceutical chemistry. In this regards, we have utilized cheap and readily available starting material such as nitroalkenes for the synthesis of O, N- heterocycles.

    The content of this dissertation is divided into five chapters, the Chapter-I deals with overview on the synthesis and utility of nitroalkenes and related literature review. The Chapter-II deals with alcoholmediatedsynthesis of 4-oxo-2-aryl-4H-chromene-3-carboxylate derivatives from 4-hydroxycoumarins. The Chapter-III describes, synthesis of 2-amino-3-substitutednaphtho[2,3-b]furan-4,9-dione from 2-hydroxy-1,4-naphthoquinone and nitroalkenes. The Chapter-IV deals with FeCl3catalyzed regioselectiveC-alkylation of indolylnitroalkenes with amino group substituted arenes. The Chapter-V describes FeCl3-catalyzed synthesis of highly substituted indolyl-tetrahydroquinoline derivatives by using electron deficient dienophiles and its application towards the synthesis of indolo-benzonaphthyridine derivatives.

    Page Abbreviations i-iv Abstract v-xi Chapter-I: Overview on the synthesis and utility of nitroalkenes I.1. Introduction 1 I.2. Synthesis of nitroalkenes 1 I.3. Nitroalkenes as Michael acceptor 3 I.4. Utility of nitroalkenes in Friedel-Crafts reactions 6 I.5. Utility of nitroalkenes in natural product synthesis 8 I.6. Synthesis of oxygen-containing heterocycles using nitroalkenes 10 I.7. Synthesis of nitrogen-containing heterocycles using nitroalkenes 14 I.8. References 20 Chapter-II: Alcohol mediated synthesis of 4-oxo-2-aryl-4H-chromene-3-carboxylate derivatives from 4-hydroxycoumarins II.1. Introduction 25 II.2. Review of literature 26 II.3. Results and discussion 28 II.4. Conclusions 40 II.5. Experimental section 41 II.6. References 50 Chapter-III: Synthesis of 2-amino-3-substituted naphtho[2,3-b]furan-4,9-dione from 2-hydroxy-1,4-naphthoquinone and nitroalkenes III.1. Introduction 53 III.2. Review of literature 54 III.3. Results and discussion 56 III.4. Conclusions 67 III.5. Experimental section 67 III.6. References 74 Chapter-IV: FeCl3 catalyzed regioselective C-alkylation of indolylnitroalkenes with amino group substituted arenes IV.1. Introduction 77 IV.2. Review of literature 78 IV.3. Results and discussion 80 IV.4. Conclusions 88 IV.5. Experimental section 89 IV.6. References 99 Chapter-V: FeCl3-catalyzed synthesis of highly substituted indolyl-tetrahydroquinoline derivatives by using electron deficient dienophiles and its application towards the synthesis of indolo-benzonaphthyridine derivatives V.1. Introduction 102 V.2. Review of literature 103 V.3. Results and discussion 106 V.4. Conclusions 118 V.5. Experimental section 118 V.6. References 136 X-ray Crystallographic Data 139 1H and 13C NMR Spectral Copies 148 List of Publications 260

    1. a) Barrett, A.G.M.; Graboski, G.G. Chem. Rev. 1986, 86, 751; b) Sibi, M.P.; Manyem,
    S.; Tetrahedron 2000, 56, 8033; c) Barratt, A. G. M. Chem. Soc. Rev. 1991, 20, 95.
    21
    2. a) Brian, P. W.; Grove, J. F.; McGowan, J. C. Nature 1946, 158, 876; b) McGowan, J. C.; Brian, P. W.; Hemming, H. G. Ann. Appl. Biol. 1948, 35, 25.
    3. Boelle, J.; Schneider, R.; Gerardin, P.; Loubinoux, B.; Maienfisch, P.; Rindlisbacher, A. Pestic. Sci. 1998, 54, 304.
    4. a) Schales, O.; Graefe, H. A. J. Am. Chem. Soc. 1952, 74, 4486; b) Plenevaux, A.; Dewey, S. L.; Fowler, J. S.; Guillaume, M.; Wolf, P. J. Med. Chem. 1990, 33, 2015; c) Dann, O.; Moller, E. F. Chem. Ber. 1949, 82, 76; d) Zee-Cheng, K.-Y.; Cheng, C. C. J. Med. Chem. 1969, 12, 157; e) Rosowsky, A.; Mota, C. E.; Wright, J. E.; Freisheim, J. H.; J. J. Heusner, McCormack, J. J.; Queener, S. F. J. Med. Chem. 1993, 36, 3103.
    5. Pettit, R. K.; Pettit, G. R.; Hamel, E.; Hogan, F.; Moser, B. R.; Wolf, S.; Pon, S.; Chapuis, J.-C.; Schmidt, J. M. Bioorg. Med. Chem. 2009, 17, 6606.
    6. Kaap, S.; Quentin, I.; Tamiru, D.; Shaheen, M.; Eger, K.; Steinfelder, H. J. Biochem. Pharmacol. 2003, 65, 603.
    7. Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583; b) Berner, O. M.; Enders, L.; Tedeschi, D. Eur. J. Org. Chem. 2002, 1877.
    8. a) Takenaka, N.; Chen, J.; Captain, B.; Sarangthem, R. S.; Chandrakumar, A. J. Am. Chem. Soc. 2010, 132, 4536; b) Wu, J.; Li, X.; Wu, F.; Wan, B. Org. Lett. 2011, 13, 4834.
    9. Kurth, M. J.; O’Brien, M. J.; Hope, H.; Yanuck, M. J. Org. Chem.1985, 50, 2626.
    10. a) Amarante, G.W.; Benassi, M.; Milagre, H.; Braga, A.A.C.; Maseras, F.; Eberlin, M. N.; Coelho, F. Chemistry A European Journal 2009, 15, 12460; b) Mazzotta, S.; Gramigna, L.; Bernardi, L.; Ricci, A. Organic Process Research and Development 2010, 14, 687.
    11. Liu, Y.; Nappi, M.; Arceo, E.; Vera, S.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 15212.
    12. a) Enders, D.; Hüttl, M.R.M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861; b) Enders, D.; Hüttl, M.R.M.; Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem. Int. Ed. 2007, 46, 467.
    13. (a) Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583; (b) March, J. Advanced Organic Chemistry, 3rd ed.; John Wiley & Sons: New York, 1985; (c) Corma, A.; Serna, P.; Garcia, H. J. Am. Chem. Soc. 2007, 129, 6358; (d) Corey, E.; Estreicher, H. Tetrahedron Lett. 1980, 21, 1113; (e) Dampawan, P. Tetrahedron Lett. 1982, 23, 135; (f) Noland, W. E. Chem. Rev. 1955, 55, 137.
    22
    14. (a) Bauer, H. H.; Urbas, L. The Chemistry of the Nitro and Nitroso Group; Feuer, H., Ed.; Interscience: New York, 1970, part 2, pp 75; (b) Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T. Chimia 1979, 31, 1; (c) Rosini, G. in: Comprehensive Organic Synthesis, vol. 2 (Eds.: C. H. Heathcock, B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, chapter 1.10, p. 321.
    15. Jalal, S.; Sarkar, S.; Bera, K.; Maiti, S.; Jana, U. Eur. J. Org. Chem. 2013, 4823.
    16. Maity, S.; Manna,S.; Rana, S.; Naveen,T.; Mallick, A.; Maiti, D. J. Am. Chem. Soc. 2013, 135, 3355.
    17. Das, J. P.; Sinha, P.; Roy, S. Org. Lett. 2002, 4, 3055.
    18. Friedricha, A.; Brase, S.; O’Connor, S. E. Tetrahedron Lett. 2009, 50, 75.
    19. Zhang, M.; Hu, P.; Zhou, J.; Wu, G.; Huang, S.; Su, W. Org. Lett. 2013, 15, 1718.
    20. Rosa, M. D.; Soriente, A. Tetrahedron 2010, 66, 2981.
    21. Jia, C.; Chen, D.; Zhang, C.; Zhang, Q.; Cao, B.; Zhao, Z. Tetrahedron 2013, 69, 7320.
    22. Habib, P. M.; Kavala, V.; Kuo, C. -W.; Raihan, M. J.; Yao, C. -F. Tetrahedron 2010, 66, 7050.
    23. Chu, C.-M.; Tu, Z.; Wu, P.; Wang, C. -C.; Liu, J. -T.; Kuo, C. -W.; Shin, Y. -H.; Yao, C. -F. Tetrahedron 2009, 65, 3878.
    24. Bartoli, G.; Bosco, M.; Giuli, S.; Giuliani, A.; Lucarelli, L.; Marcantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2005, 70, 1941.
    25. Ramachandiran, K.; Karthikeyan, K.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2010, 51, 3006.
    26. Wang, J.; Li, H.; Zu, L.; Wang, W. Org. Lett. 2006, 8, 1391.
    27. Chen, J.; Geng, Z.-C.; Li, N.; Huang, X. -F.; Pan, F. -F.; Wang, X. -W. J. Org. Chem. 2013, 78, 2362.
    28. Azizi, N.; Arynasab, F.; Saidi, M. R. Org. Biomol. Chem. 2006, 4, 4275.
    29. Kuo, C.-W.; Wang, C. -C.; Fang, H. -L.; Raju, B. R.; Kavala, V.; Habib, P. M.; Yao, C. -F. Molecules 2009, 14, 3952.
    30. Jia, Y. -X.; Zhu, S. -F.; Yang, Y.; Zhou, Q. -L. J. Org. Chem. 2006, 71, 75.
    31. Mori, K.; Wakazawa, M.; Akiyama, T. Chem. Sci. 2014, 5, 1799.
    32. Jin, H.; Zhang, P.; Bijian, K.; Ren, S.; Wan, S.; Alaoui-Jamali, M. A.; Jiang, T. Mar. Drugs 2013, 11, 1427.
    33. Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2012, 14, 4580.
    34. Kumar, T.; Mobin, S. M.; Namboothiri, I. N. N. Tetrahedron 2013, 69, 4964.
    23
    35. Burgey, C. S.; Paone, D. V.; Shaw, A. W.; Deng, J. Z.; Nguyen, D. N.; Potteiger, C. M.; Graham, S. L.; Vacca, J. P.; Williams, T. M. Org. Lett. 2009, 10, 3235.
    36. (a) Willenbring, D.; Dean, J. Russian Journal of General Chemistry. 2008, 7231; (b) Koehn, F. E.; Carter, G.T. Nature Reviews-Drug Discovery. 2005, 4, 206.
    37. Lu, S. -C.; Zheng, P. -R.; Liu, G. J. Org. Chem. 2012, 77, 7711.
    38. Barange, D. K.; Raju, B. R.; Kavala, V.; Kuo, C. -W. Tu, Y. -C.; Yao, C. -F. Tetrahedron 2010, 66, 3754.
    39. Yan, M. -C.; Jang, Y. -J.; Yao, C. -F. Tetrahedron Lett. 2001, 42, 2717.
    40. Kundu, D.; Samim, Md.; Majee, A.; Hajra, A. Chem. Asian J. 2011, 6, 406.
    41. Zhou, Z.; Liu, H.; Li, Y.; Liu, J.; Li, Y.; Liu, J.; Yao, J.; Wang, C. ACS Comb. Sci. 2013, 15, 363.
    42. Raimondi, W.; Dauzonne, D.; Constantieux, T.; Bonne, D.; Rodriguez, J. Eur. J. Org. Chem. 2012, 6119.
    43. Gao, Y.; Yang, W.; Du, D. -M. Tetrahedron: Asymmetry 2012, 23, 339.
    44. Yang, W.; Yang, Y.; Du, D. -M. Org. Lett. 2013, 15, 1190.
    45. Hsieh, T. H. H.; Dong, V. M. Tetrahedron 2009, 65, 3062.
    46. Ghabraie, E.; Balalaie, S.; Bararjanian, M.; Bijanzadeh, H. R.; Rominger, F. Tetrahedron 2011, 67, 5415.
    47. Chen, Y.; Li, K.; Zhao, M.; Li, Y.; Chen, B. Tetrahedron Lett. 2013, 54, 1627.
    48. Wang, S.; Zhu, X.; Chai, Z.; Wang, S. Org. Biomol. Chem. 2014, 12, 1351.
    49. Tang, D.; Wu, P.; Liu, X.; Chen,Y. -X.; Guo, S. -B.; Chen, W. -L.; Li, J. -G.; Chen, B. -H. J. Org. Chem. 2013, 78, 2746.
    50. Hong, D.; Zhu, Y.; Li, Y.; Lin, X.; Lu, P.; Wang, Y. Org. Lett. 2011, 13, 4668.
    51. Arigela, R. K.; Mandadapu, A. K.; Sharma, S. K.; Kumar, B.; Kundu, B. Org. Lett. 2012, 14, 1804.
    52. Santra, S.; Bagdi, A. K.; Majee, A.; Hajra, A. Adv. Synth. Catal. 2013, 355, 1065.
    53. Balamurugan, K.; Jeyachandran, V.; Perumal, S.; Menendez, J. C. Tetrahedron 2011, 67, 1432.
    54. Yan, M. -C.; Tu, Z.; Lin, C.; Ko, S.; Hsu, J.; Yao, C. -F. J. Org. Chem. 2004, 69, 1565.
    55. Stokes, B. J.; Liu, S.; Driver, T. G. J. Am. Chem. Soc. 2011, 133, 4702.
    56. Kumar, R.; Namboothiri, I. N. N. Org. Lett. 2011, 13, 4016.
    57. Wu, L.; Wang, Y.; Song, H.; Tang, L.; Zhou, Z.; Tang, C. Adv. Synth. Catal. 2013, 355, 1053.
    24
    58. Rai, A.; Singh, A. K.; Singh, P.; Yadav, L. D. S. Tetrahedron Lett. 2011, 52, 1354.
    59. Wang, X. -F.; Chen, J. -R.; Cao, Y. -J.; Cheng, H. -G.; Xiao, W. J. Org. Lett. 2010, 12, 1140.
    60. Jin, C. -Y.; Wang, Y.; Liu, Y. -Z.; Shen, C.; Xu, P. -F. J. Org. Chem. 2012, 77, 11307.

    QR CODE