Basic Search / Detailed Display

Author: 林芷筠
Chih-Yun Lin
Thesis Title: 支鏈胺基酸與肌酸增補對耐力運動與瞬發力運動之貢獻
Contributions of Branched-Chain Amino Acid and Creatine Supplementations to the Endurance and Power Exercise
Advisor: 湯馥君
Tang, Fu-Chun
Degree: 碩士
Master
Department: 人類發展與家庭學系
Department of Human Development and Family Studies
Thesis Publication Year: 2010
Academic Year: 98
Language: 中文
Number of pages: 94
Keywords (in Chinese): 支鏈胺基酸肌酸嘌呤代謝物麩醯胺羥基脯胺酸三甲基组胺酸尿液尿素氮蛋白質水解作用
Keywords (in English): branched-chain amino acids, creatine, purine metabolites, glutamine, hydroxyproline, 3-methylhistidine, urinary urea nitrogen, proteolysis
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 166Downloads: 26
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究探討支鏈胺基酸與肌酸增補對於訓練良好之徑賽運動員進行耐力與瞬發力運動之影響。在本雙盲研究中,召募12位男性徑賽運動員(20.3 ± 1.4歲,174.0 ± 6.0公分)進行三個試驗(1st試驗:支鏈胺基酸增補與耐力運動、2nd試驗:肌酸增補與耐力運動、3rd試驗:肌酸增補與瞬發力運動)。在1st試驗及2nd試驗中,支鏈胺基酸或肌酸增補前、後,分別執行相同之耐力運動(耐力試驗:65-70%最大保留心跳率之60分鐘跑步)。在3rd試驗中,肌酸增補前、後進行相同之瞬發力運動(瞬發力試驗:100公尺衝刺)。於各個試驗中,支鏈胺基酸(白胺酸54%、異白胺酸19%、及纈胺酸27%)或肌酸增補劑之攝取皆為每人每日12克,且均為期15天。本研究測量身體組成、握力、血漿葡萄糖、乳酸、支鏈胺基酸、天門冬胺酸、麩醯胺、丙胺酸、游離色胺酸、次黃嘌呤與尿酸,以及尿液羥基脯胺酸、三甲基組胺酸、尿素氮及肌酸酐為研究依據。
    研究結果顯示,在耐力運動試驗中,支鏈胺基酸增補後,未改變受試者之身體組成,肌酸增補後,顯著增加受試者之體重 (p<.05),並有增加除脂體重及身體總水重之傾向。不論有無支鏈胺基酸或肌酸增補,對於握力表現皆無促進之作用。支鏈胺基酸增補顯著促進運動後恢復期血乳酸之清除 (p<.05)。進行耐力運動後,肌酸增補顯著降低運動後恢復期血乳酸之濃度 (p<.05)以及血漿游離色氨酸/支鏈胺基酸之比值 (p<.05)。支鏈胺基酸增補與肌酸增補(2nd試驗)均有增加血漿天門冬胺酸濃度之傾向,同時也有降低血漿麩醯胺、次黃嘌呤與尿酸濃度之傾向。支鏈胺基酸增補或肌酸增補(3rd試驗)後,皆顯著降低血漿丙胺酸濃度之恢復值 (p<.05)。支鏈胺基酸增補後,尿中代謝物並無顯著改變。不論在耐力運動前或瞬發力運動前,肌酸增補皆顯著降低血漿嘌呤代謝物與麩醯胺、尿液三甲基組胺酸與尿素氮濃度 (p<.05)。然而,在100公尺衝刺後,肌酸增補後之尿液羥基脯胺酸濃度顯著增加 (p<.05),但在耐力跑步後,肌酸增補則不影響尿液羥基脯胺酸濃度。
    本研究結果顯示,訓練良好之運動員增補支鏈胺基酸或肌酸後,可節省耐力運動中肌肉肝醣及維持體蛋白,並具有降低肌肉中嘌呤核苷酸循環活性之作用。但肌酸增補有可能導致瞬發力運動員體內膠原蛋白之降解。

    The purpose of the study was to investigate the effects of branched-chain amino acid (BCAA) and creatine supplementations on the plasma and urinary metabolites of well trained athletes after endurance and power running. In this double-blind study, twelve male athletes (20.3 ± 1.4 y, 174.0 ± 6.0 cm) completed three trials (1st trial: BCAA supplementation & endurance exercise, 2nd trial: creatine supplementation & endurance exercise, and 3rd trial: creatine supplementation & power exercise). Within either trial of the 1st & 2nd trials, participants performed two identical 60-min running (endurance trial; 65-70% maximum heart rate reserved) exercises before and after 15 daily BCAA supplementation (12 g BCAAs/day/person; leucine 54%, isoleucine 19%, and valine 27%) or creatine supplementation (12 g creatine monohydrate/day/person). In the 3rd trial, participants preformed two identical 100 m sprint running (power trial) exercises before and after 15 daily creatine supplementation which was in accordance with the supplementary strategy of the endurance trial. Body composition and grip strength were measured, as well as the collection of plasma and urinary samples. Plasma samples were examined for the concentrations of glucose, lactate, BCAAs, aspartate, glutamine, alanine, free tryptophan (f-TRP), hypoxanthine, and uric acid. Urinary samples were examined for the concentrations of hydroxyproline, 3-methylhistidine, urea nitrogen, and creatinine.
    Body composition was not affected by BCAA supplementation. Creatine supplementation significantly increased the body weights (p<.05), and inclined to increase the fat-free mass and total body water of the endurance trial. Neither BCAA supplementation nor creatine supplementation affected the grip strength. BCAA supplementation significantly enhanced the clearance of plasma lactate after recovery from exercise (p<.05). Plasma lactate concentration and ratio of f-TRP/BCAAs after recovery from endurance running significantly decreased (p<.05) with creatine supplementation. Both BCAA supplementation and creatine supplementation (2nd trial) tended to increase plasma aspartate concentrations and decrease plasma glutamine, hypoxanthine, and uric acid concentrations. At recovery, plasma alanine concentration significantly decreased (p<.05) with BCAA supplementation and creatine supplementation (3rd trial), respectively. The concentrations of urinary metabolites were not affected by BCAA supplementation. Before running, plasma purine metabolite and glutamine, and urinary 3-methylhistidine and urea nitrogen concentrations significantly decreased (p<.05) in either trial with creatine supplementation. However, with creatine supplementation, urinary hydroxyproline concentration significantly increased (p<.05) in the power trial, whereas no influence in the endurance trial.
    The findings suggest that BCAA or creatine supplementation (2nd trial) led to spare glycogen and protein utilization, and decrease the purine nucleotide cycle activity in the muscle of well-trained athletes. But, creatine supplementation might induce collagen proteolysis in power athletes.

    目 次 中文摘要..................................................i 英文摘要................................................iii 謝誌......................................................v 目次....................................................vii 表次.....................................................xi 圖次....................................................xii 第一章 緒論................................................1 第一節 研究動機.............................................1 第二節 研究目的.............................................2 第三節 研究問題.............................................3 第四節 名詞定義.............................................3 第二章 文獻探討.............................................5 第一節 人體能量代謝系統......................................5 第二節 支鏈胺基酸增補與運動表現...............................9 第三節 肌酸增補與運動表現....................................12 第四節 嘌呤核苷酸循環 (Purine Nucleotide Cycle).............17 第五節 文獻探討總結.........................................22 第三章 研究方法............................................24 第一節 研究流程............................................24 第二節 研究架構............................................25 第三節 研究對象............................................26 第四節 研究設計............................................26 一、設計方式...........................................26 二、運動試驗...........................................26 三、增補方式...........................................27 四、飲食控制...........................................27 五、研究流程說明........................................27 第五節 研究地點............................................29 第六節 研究工具與方法.......................................31 一、資料收集與測量方法..................................31 二、檢體生化分析.......................................33 第七節 統計分析...........................................42 第四章 研究結果............................................43 第一節 支鏈胺基酸、肌酸增補與耐力運動.........................43 一、身體組成與骨質分析..................................43 二、運動表現分析........................................43 三、血液生化分析........................................43 四、尿液生化分析........................................45 第二節 肌酸增補、耐力與瞬發力運動.............................45 一、身體組成與骨質分析..................................45 二、運動表現分析........................................45 三、血液生化分析........................................46 四、尿液生化分析........................................46 第五章 討論................................................48 第一節 支鏈胺基酸、肌酸增補與耐力運動.........................48 第二節 肌酸增補、耐力與瞬發力運動.............................53 第六章 結論與建議...........................................57 第一節 結論................................................57 一、支鏈胺基酸與肌酸增補之於耐力運動......................57 二、肌酸增補之於耐力運動及瞬發力運動......................57 第二節 建議................................................57 第三節 未來研究之建議.......................................58 參考文獻...................................................70 一、中文部分...........................................70 二、西文部分...........................................70 附錄......................................................82 附錄一 人體試驗同意證明書....................................82 附錄二 受試者同意書.........................................83 附錄三 運動自覺量表 (RPE)...................................84 附錄四 受試者之身體組成資料表 (1st Trial)....................85 附錄五 受試者之身體組成資料表 (2nd Trial)....................86 附錄六 受試者之握力資料表....................................87 附錄七 受試者之血液生化分析表 (1st Trial)....................88 附錄八 受試者之血液生化分析表 (2nd Trial)....................89 附錄九 受試者之尿液生化分析表 (1st Trial)....................90 附錄十 受試者之尿液生化分析表 (2nd Trial)....................91 附錄十一 受試者之身體組成資料表 (3rd Trial)...................92 附錄十二 受試者之血液生化分析表 (3rd Trial)...................93 附錄十三 受試者之尿液生化分析表 (3rd Trial)...................94 表 次 表3.1 血漿胺基酸混合標準液中各胺基酸stock標準液之取量..........36 表3.2 血漿嘌呤代謝物混合標準液中各嘌呤代謝物stock標準液之取量...38 表3.3 尿液胺基酸代謝物混合標準液中各胺基酸代謝物stock標準液之取量........................................................39 表3.4 肌酸酐稀釋標準液、尿液稀釋液及反應試劑鹼性苦味酸之取量.....41 表4.1支鏈胺基酸與肌酸增補前後,耐力運動對於身體組成影響之分析(1st & 2nd trials).............................................59 表4.2支鏈胺基酸與肌酸增補對於耐力運動表現之影響分析.............60 表4.3 肌酸增補前後,運動對於身體組成影響之分析(2nd &3rd trials)...................................................61 表4.4 肌酸增補對於瞬發力運動表現之影響分析....................62 圖 次 圖2.1 肌酸合成途徑.........................................12 圖2.2 肌肉細胞中,嘌呤核苷酸循環 (Purine Nucleotide Cycle, PNC) 之執行,以及天門冬胺酸 (Aspartate)、延胡索酸 (Fumarate) 之循環利用..................................................18 圖2.3 支鏈胺基酸是將胺基氮集中至嘌呤核苷酸循環的主要媒介........21 圖3.1 研究流程示意圖........................................30 圖4.1 支鏈胺基酸與肌酸增補前後,耐力運動對於血漿代謝物改變之分析........................................................62 圖4.2 支鏈胺基酸與肌酸增補前後,耐力運動對於尿液代謝物改變之分析........................................................64 圖4.3 肌酸增補前後,耐力運動與瞬發力運動對於血漿代謝物改變之分析........................................................66 圖4.4 肌酸增補前後,耐力運動與瞬發力運動對於尿液改變之分析......68

    參考文獻

    ㄧ、中文部份
    王順正 (1993)。運動訓練對骨骼肌蛋白質的影響─以尿中3-甲基組胺酸的變化來評量。中華體育,25,54-64 頁。
    吳幸娟、吳佳娟、金惠民、胡淑惠、陳惠欣、章樂綺、黃惠煐、曾美智、劉慧蓉、蔡秀玲 (2001)。營養評估。臺中市:華格那出版社。
    施嘉美 (2008)。負重運動與飲食行為對中年婦女骨骼健全之影響。國立臺灣師範大學人類發展與家庭學系,碩士論文,未出版,臺北市。

    二、西文部份
    Adibi, S. A., Krzysik, B. A., Morse, E. L., Amin, P. M., & Allen, E. R. (1974). Oxidative energy metabolism in the skeletal muscle: Biochemical and ultra-structural evidence for adaptive changes. The Journal of Laboratory & Clinical Medicine, 83, 548-562.
    Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R., & Wahren, J. (1974). Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. The Journal of Clinical Investigation, 53(4), 1080-1090.
    Antolic, A., Roy, B. D., Tarnopolsky, M. A., Zernicke, R. F., Wohl, G. R., & Shaughnessy, S. G. et al. (2007). Creatine monohydrate increases bone mineral density in young Sprague-Dawley rats. Medicine & Science in Sports & Exercise, 39(5), 816-820.
    Arinze, I. J. (2005). Facilitating understanding of the purine nucleotide cycle and the one-carbon pool: Part I: The purine nucleotide cycle. Biochemistry & Molecular Biology Education, 33(3), 165-168.
    Ballard, F. J., & Tomas, F. M. (1983). 3-methylhistidine as a measure of skeletal muscle protein breakdown in human subjects: The case for its continued use. Clinical Science (London, England: 1979), 65(3), 209-215.
    Balsom, P. D., Söderlund, K., Sjödin, B., & Ekblom, B. (1995). Skeletal muscle metabolism during short duration high-intensity exercise: Influence of creatine supplementation. Acta Physiologica Scandinavica, 154, 303-310.
    Balsom, P. D., Ekblom, B., Söderlund, K., Sjödin, B., & Hultman, E. (1993). Creatine supplementation and dynamic high-intensity intermittent exercise. Scandinavian Journal of Medicine & Science in Sports, 3, 143-149.
    Banister, E. W., & Cameron, B. J. (1990). Exercise-induced hyperammonemia: Peripheral and central effects. International Journal of Sports Medicine, 11(Suppl 2), S129-S142.
    Bellinger, B. M., Bold, A., Wilson, G. R., Noakes, T. D., & Myburgh, K. H. (2000). Oral creatine supplementation decreases plasma markers of adenine nucleotide degradation during a 1-h cycle test. Acta Physiologica Scandinavica, 170(3), 217-224.
    Bemben, M. G., & Lamont, H. S. (2005). Creatine supplementation and exercise performance: Recent findings. Sports Medicine, 35(2), 107-125.
    Birch, R., Noble, D., & Greenhaff, P. L. (1994). The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man. European Journal of Applied Physiology, 69, 268-270.
    Bizzarini, E., & De Angelis, L. (2004). Is the use of oral creatine supplementation safe? The Journal of Sports Medicine & Physical Fitness, 44(4), 411-416.
    Blomstrand, E., Ek, S., & Newsholme, E. A. (1996). Influence of ingesting a solution of branched-chain amino acids on plasma and muscle concentrations of amino acids during prolonged submaximal exercise. Nutrition, 12, 485-490.
    Blomstrand, E., Hassmen, P., Ek, S., Ekblom, B., & Newsholme, E. A. (1997). Influence of ingesting a solution of branched-chain amino acids on perceived exertion during exercise. Acta Physiological Scandinavica, 159(1), 41-49.
    Borg, G. (1998). Borg's Perceived Exertion & Pain Scales. Champaign, Illinois: Human Kinetics.
    Broberg, S., & Sahlin, K. (1989). Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. Journal of Applied Physiology, 67(1), 116-122.
    Brun, J. F., Fedou, C., & Mercier, J. (2000). Postprandial reactive hypoglycemia. Diabetes & Metabolism, 26(5), 337-351.
    Butler, A. R. (1975). The jaffe reaction. Identification of the coloured species. Clinica Chimica Acta, 59(2), 227-232.
    Candow, D. G., Little, J. P., Chilibeck, P. D., Abeysekara, S., Zello, G. A., & Kazachkov, M. et al. (2008). Low-dose creatine combined with protein during resistance training in older men. Medicine & Science in Sports & Exercise, 40(9), 1645-1652.
    Carraro, F., Kimbfough, T. D., & Wolfe, R. R. (1993). Urea kinetics in human at two levels of exercise intensity. Journal of Applied Physiology, 75(3), 1180-1185.
    Chilibeck, P. D., Chrusch, M. J., Chad, K. E., & Burke, D. G. (2005). Creatine monohydrate and resistance training increase bone mineral content and density in order men. The Journal of Nutrition, Health, & Aging, 9(5), 352-354.
    Chou, Y. H., Li, W. M., Li, C. C., Huang, S. P., Liu, C. C., & Wu, W. J. et al. (2007). Clinical study of uric acid urolithiasis. The Kaohsiung Journal of Medical Sciences, 23, 298-301.
    Christenson, R. H. (1997). Biochemical markers of bone metabolism: An overview. Clinical Biochemistry, 30(8), 573-593.
    Cordain, L. (1998). Does creatine supplementation enhance athletic performance? Journal of the American College of Nutrition, 17(3), 205-206.
    Crowe, M. J., Weatherson, J. N., & Bowden, B. F. (2006). Effects of leucine supplementation on exercise performance. European Journal of Applied Physiology, 97(6), 664-672.
    Curzon, G., Friedel, J., & Knott, P. J. (1973). The effect of fatty acids on the binding of tryptophan to plasma protein. Nature, 242, 198-200.
    Daskalopoulou, S. S., Tzovaras, V., Mikhailidis, D. P., & Elisaf, M. (2005). Effect on serum uric acid levels of drugs prescribed for indications other than treating hyperuricaemia. Current Pharmaceutical Design, 11, 4161-4175.
    Davis, J. M. (1995). Carbohydrates, branched-chain amino acids, and endurance: The central fatigue hypothesis. International Journal of Sport Nutrition, 5, S29-S38.
    Demant, T. W., & Rhodes, F. C. (1999). Effects of creatine supplementation on exercise performance. Sports Medicine, 28(1), 46-60.
    Engelhardt, M., Neumann, G., Berbalk, A., & Reuter, I. (1998). Creatine supplementation in endurance sports. Medicine & Science in Sports & Exercise, 30(7), 1123-1129.
    Faria, E. W., White, M. T., Coragan, C., & Faria, I. E. (2000). Effect of oral creatine supplementation on AOD, AT, and blood lactate in oarswomen. Medicine & Science in Sports & Exercise, 32(5), supplement abstract 559.
    Flanagan, W. F., Holmes, E. W., Sabina, R. L., & Swain, J. L. (1986). Importance of purine nucleotide cycle to energy production in skeletal muscle. American Journal of Physiology, 251, C795-C802.
    Garibotto, G., Sofia, A., Bobaudo, C., Saffioti, S., Sala, M. R., & Verzola, D. et al. (2004). Kidney protein dynamics and ammoniagenesis in humans with chronic metabolic acidosis. Journal of the American Society of Nephrology, 15, 1606-1615.
    Gibala, M. J. (2007). Protein metabolism and endurance exercise. Sports Medicine, 37, 337-340.
    Gibala, M. J., Young, M. E., & Taegtmeyer, H. (2000). Anaplerosis of the citric acid cycle: Role in energy metabolism of heart and skeletal muscle. Acta Physiologica Scandinavica, 168(4), 657-665.
    Graham, T. E., Turcotte, L. P., Kiens, B., & Richter, E. A. (1997). Effect of endurance training on ammonia and amino acid metabolism in humans. Medicine & Science in Sports & Exercise, 29(5), 646-653.
    Greenhaff, P. L., Bodin, K., Söderlund, K., & Hultman, E. (1996). Effects of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Acta Physiologica Scandinavica, 158, 195-202.
    Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Söderlund, K., & Hultman, E. (1993). Influence of oral creatine supplementation on muscle torque during repeated bouts of maximal voluntary exercise in man. Clinical Science, 84, 565-571.
    Greer, B. K., Woodard, J. L., White, J. P., Arguello, E. M., & Haymes, E. M. (2007). Branch-chain amino acid supplementation and indicators of muscle damage after endurance exercise. International Journal of Sport Nutrition & Exercise Metabolism, 17, 595-607.
    Hadjicharalambous, M., Kilduff, L. P., & Pitsiladis, Y. (2008). Brain serotonin and dopamine modulators, perceptual responses and endurance performance during exercise in the heat following creatine supplementation. Journal of the International Society of Sports Nutrition, 5(14).
    Haralambie, G., & Berg, A. (1976). Serum urea and amino nitrogen changes with exercise duration. European Journal of Applied Physiology, 36(1), 39-48.
    Harper, A. E., Block, K. P., & Cree, T. C. (1983). Branched-chain amino acids: Nutritional and metabolic interrelationships. In M. Arnal, R. Pion, & D. Bonin (Eds), Protein Metabolism & Nutrition (4th) (pp.159-181). Paris: Int. Symp.
    Harper, A. E., Miller, R. H., & Block, K. P. (1984). Branched-chain amino acid metabolism. Annual Review of Nutrition, 4, 409-454.
    Harris, R. C., Söderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical Science, 83(3), 367–374.
    Hernandez, C. J., Tang, S. Y., Baumbach, B. M., Hwu, P. B., Sakkee, A. N., & van der Ham, F. et al. (2005). Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-linds. Bone, 37(6), 825-832.
    Hespel, P., Op’t Eijnde, B., & Van Leemputte, M. (2002). Opposite actions of caffeine and creatine on muscle relaxation time in humans. Journal of Applied Physiology, 92(2), 513-518.
    Izquierdo, M., Ibañez, J., González-Badillo, J. J., & Gorostiaga, E. M. (2002). Effects of creatine supplementation on muscle power, endurance, and sprint performance. Medicine & Science in Sports & Exercise, 34(2), 332-343.
    Kamber, M., Koster, M., Kreis, R., Walker, G., Boesch, C., & Hoppeler, H. (1999). Creatine supplementation, part I: Performance, clinical chemistry, and muscle volume. Medicine & Science in Sports & Exercise, 31, 1763-1769.
    Karvonen, M. J., Kentala, E., & Mustala, O. (1957). The effects of training on heart rate: A longitudinal study. Annales Medicinae Experimentalis et Biologiae Fenniae, 35(3), 307-315.
    Ketai, L. H., Simon, R. H., Kreit, J. W., & Grum, C. M. (1987). Plasma hypoxanthine and exercise. The American Review of Respiratory Disease, 136, 98-101.
    Kley, R. A., Vorgerd, M., & Tarnopolsky, M. A. (2007). Creatine for treating muscle disorders. Cochrane Database of Systematic Reviews (Online), Jan 24(1), CD004760.
    Kraemer, W. J., & Volek, J. S. (1999). Creatine supplementation: Its role in human performance. Clinics in Sports Medicine, 18, 651-666.
    Lee, R. D., & Nieman, D. C. (2003). Nutritional Assessment (3th ed.). New York, NY: McGraw-Hill Companies, Inc.
    Lehmkuhl, M., Malone, M., Justice, B., Trone, G., Pistilli, E., & Vinci, D. et al. (2003). The effects of 8 weeks of creatine monohydrate and glutamine supplementation on body composition and performance measures. Journal of Strength & Conditioning Research, 17(3), 425-438.
    Lemon, P. W., Deutsch, D. T., & Payne, W. R. (1989). Urea production during prolonged swimming. Journal of Sports Sciences, 7(3), 241-246.
    Louis, M., Poortmans, J. R., Francaux, M., Berre, J., Boisseau, N., & Brassine, E. et al. (2003). No effect of creatine supplementation on human myofibrillar and sarcoplasmic protein synthesis after resistance exercise. American Journal of Physiology. Endocrinology & Metabolism, 285(5), E1089-E1094.
    Lowenstein, J. M. (1972). Ammonia production in muscle and other tissues: The purine nucleotide cycle. Physiological Reviews, 52(2), 382-414.
    Lowenstein, J. M. (1990). The purine nucleotide cycle revised. International Journal of Sports Medicine, 11, S37-S46.
    MacLean, D. A., Spriet, L. L., Hultman, E., & Graham, T. E. (1991). Plasma and muscle amino acid and ammonia responses during prolonged exercise in humans. Journal of Applied Physiology, 70(5), 2095-2103.
    Mallett, L. E., Exton, J. H., & Park, C. R. (1969). Control of gluconeogenesis form amino acids in the perfused rat liver. The Journal of Biological Chemistry, 244, 5713-5723.
    Mayes, P. A., & Botham, K. M. (2006). Bioenergetics: The role of ATP. In R. K. Murray, D. K. Granner, P. A. Mayes, & V. W. Rodwell (Eds.), Harper’s Illustrated Biochemistry (27th) (pp. 80-85). New York, McGraw Hill.
    McKenzie, S., Phillips, S. M., Carter, S. L., Lowther, S., Gibala, M. J., & Tarnopolsky, M. A. (2000). Endurance exercise training attenuates leucine oxidation and BCOAD activation dudng exercise in humans. American Journal of Physiology. Endocrinology & Metabolism, 278, E580-E587.
    Mesa, J. L., Ruiz, J. R., Gonzalez-Gross, M. M., Gutiérrez Sáinz, A., & Castillo Garzón, M. J. (2002). Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Medicine, 32(14), 903-944.
    Meyer, R. A., Dudley, G. A., & Terjung, R. L. (1980). Ammonia and IMP in different skeletal muscle fibers after exercise in rats. Journal of Applied Physiology, 49, 1037-1341.
    Mineo, I., Kono, N., Shimizu, T., Hara, N., Yamada, Y., & Sumi, S. et al. (1985). Excess purine degradation in exercising muscles of patients with glycogen storage disease types V and VII. The Journal of Clinical Invesigation, 76, 556-560.
    Mujika, I., & Padilla, S. (1997). Creatine supplementation as an ergogenic aid for sports performance in highly trained athletes: A critical review. International Journal of Sports Medicine, 18(7), 491-496.
    Newsholme, E. A., Blomstrand, E., & Ekblom, B. (1992). Physical and mental fatigue: Metabolic mechanisms and importance of plasma amino acids. British Medical Bulletin, 48(3), 477-495.
    Paddon-Jones, D., Børsheim, E., & Wolfe, R. R. (2004). Potential ergogenic effects of arginine and creatine supplementation. Journal of Nutrition, 134(10S), 2888S-2894S.
    Parise, G., Mihic, S., MacLennan, D., Yarasheski, K. E., & Tarnopolsky, M. A. (2001). Effects of acute creatine monohydrate supplementation on leucine kinetics and mixed-muscle protein synthesis. Journal of Applied Physiology, 91, 1041-1047.
    Paul, G. L., Gautsch, T. A., & Layman, D. K, (1998). Amino acid and protein metabolism during exercise and recovery. In I. Wolinsky (Ed.), Nutrition in Exercise & Sport (3rd ed) (pp. 125-158). Boca Raton, Florida: CRC Press.
    Prockop, D. J., & Kivirikko, K. I. (1967). Relationship of hydroxyproline excretion in the urine to collagen metabolism, biochemistry and clinical application. Annals of Interna Medicine, 66(6), 1243-1266.
    Rennie, M. J., & Tipton, K. D. (2000). Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annual Review of Nutrition, 20, 457-483.
    Rico-Sanz, J., & Marco, M. T. M. (2000). Creatine enhances oxygen uptake and performance during alternating intensity exercise. Medicine & Science in Sports & Exercise, 32(2), 379-385.
    Romer, L. M., Barrington, J. P., & Jeukendrup, A. E. (2001). Effects of oral creatine supplementation on high intensity, intermittent exercise performance in competitive squash players. International Journal of Sports Medicine, 22(8), 546-552.
    Roschel, H., Gualano, B., Marquezi, M., Costa, A., & Lancha, A. H. J. (2010). Creatine supplementation spares muscle glycogen during high intensity intermittent exercise in rats. Journal of the International Society of Sports Nutrition, 7(6).
    Ruderman, N. B. (1975). Muscle amino acid metabolism and gluconeogenesis. Annual Review of Medicine, 26, 245-258.
    Sahlin, K., & Broberg, S. (1990). Adenine nucleotide depletion in human muscle during exercise: Causality and significance of AMP deamination. International Journal of Sports Medicine, 11, S62-S67.
    Sahlin, K., Tonkonogi, M., & Söderlund, K. (1998). Energy supply and muscle fatigue in humans. Acta Physiologica Scandinavica, 162, 261-266.
    Skare, O. C., Skadberg, O., & Wisnes, A. R. (2001). Creatine supplementation improves sprint performance in male sprinters. Scandinavian Journal of Medicine & Science in Sports, 12, 33-46.
    Tang, F. C. (1996). Plasma branched-chain amino acid changes during energetic stress. Nutritional Sciences Journal, 21(1), 27-36.
    Tang, F. C. (2003). Effect of branched-chain amino acid supplements on body composition measured with SBIA: An advanced BIA. Nutritional Sciences Journal, 21, 65-73.
    Tang, F. C. (2004). Plasma fatty acid concentration changes during intense exercise after pre-exercise carbohydrate feeding. Nutritional Sciences Journal, 29(4), 202-210.
    Tang, F. C. (2006). Influence of branched-chain amino acid supplementation on urinary protein metabolite concentrations after swimming. Journal of the American College of Nutrition, 25(3), 188-194.
    Tang, F. C., Lee, C. W., & Hsieh, S. Y. (1997). Physiological and performance effects of adding branched-chain amino acids to a high carbohydrate formula diet during exercise. Nutritional Sciences Journal, 22(4), 361-371.
    Tarnopolsky, M. A. (2007). Clinical use of creatine in neuromuscular and neurometabolic disorders. Sub-cellular Biochemistry, 46, 183-204.
    Tarnopolsky, M. A., & Safdar, A. (2008). The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Applied Physiology, Nutrition, & Metabolism, 33(1), 213-227.
    Tarnopolsky, M. A., Parise, G., Yardley, N. J., Ballantyne, C. S., Olatinji, S., & Phillips, S. M. (2001). Creatine-dextrose and protein-dextorse induce similar strength gains during training. Medicine & Science in Sports & Exercise, 33(12), 2044-2052.
    Terjung, R. L. (1994). Ammonia metabolism in muscle. In R. J. Maughan & S. M. Shirreffs (eds), Biochemistry of Exercise (9th) (pp. 485-496). Aberdeen, Scotland, Human Kinetics.
    Terjung, R. L., Clarkson, P., Eichner, E. R., Greenhaff, P. L., Hespel, P. J., & Israel, R. G. et al. (2000). The physiological and health effect of oral creatine supplementation. Medicine & Science in Sports & Exercise, 32(3), 706-716.
    Urhausen, A., & Kindermann, W. (2002). Diagnosis of overtraining: What tools do we have? Sports Medicine (Auckland, N.Z.), 32(2), 95-102.
    Vandenberghe, K., Gillis, N., Van Leemputte, M., Van Hecke, P., Vanstapel, F., & Hespel, P. (1996). Caffeine counteracts the ergogenic action of muscle creatine loading. Journal of Applied Physiology, 80, 452-457.
    Volek, J. S., & Kraemer, W. J. (1996). Creatine supplementation: Its effect on human muscular performance and body composition. Journal of Strength & Conditioning Research, 10, 200-210.
    Volek, J. S., Duncan, N. D., Mazzetti, S. A., Staron, R. S., Putuklan, M., & Gómez, A. L. et al. (1999). Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Medicine & Science in Sports & Exercise, 31, 1147-1156.
    Wagenmakers, A. J., Coakley, J. H., & Edwards, R. H. (1990). Metabolism of branched-chain amino acids and ammonia during exercise: Clues from McArdle’s disease. International Journal of Sports Medicine, 11(2), S101-S113.
    Westerblad, H., Allen, D. G., & Lännergren, J. (2002). Muscle fatigue: Lactic acid or inorganic phosphate the major cause? News in Physiological Sciences, 17, 17-21.
    Williams, M. H. (2007a). Body Weight and Composition for Health and Sport. In Nutrition for Health, Fitness & Sport (8th ed) (pp. 363-398). New York: McGraw-Hill.
    Williams, M. H. (2007b). Human Energy. In Nutrition for Health, Fitness & Sport (8th ed) (pp. 81-110). New York: McGraw-Hill.
    Williams, M. H. (2007c). Protein: The tissue builder. In Nutrition for Health, Fitness & Sport (8th ed) (pp. 193-236). New York: McGraw-Hill.
    Williams, M. H., & Branch, J. D. (1998). Creatine supplementation and exercise performance: An update. Journal of the American College of Nutrition, 17(3), 216-234.
    Yamamoto, T., & Newsholme, E. A. (2000). Diminished central fatigue by inhibition of the L-system transporter for the uptake of tryptophan. Brain Research Bulletin, 52(1), 35-38.
    Yamamoto, T., Moriwaki, Y., Takahashi, S., Nasako, Y., & Higashino, K. (1993). Effect of lactate infusion on renal transport of purine bases and oxypurinol. Nephron, 65, 73-76.
    Young, V. R., & Munro, H. N. (1978). Ntau-methylhistidine (3-methylhistidine) and muscle protein turnover: An overview. Federation Proceedings, 37(9), 2291-2300.
    Yu, T. F., Spirota, T. H., Halpern, B. M., & Gutman, A. B. (1957). Effect of sodium lactate infusion on urate clearance in man. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 96, 809-813.
    Zhu, Z. Q., Liu, W., Xu, C. L., Han, S. M., Zu, S. Y., & Zhu, G. J. (2007). Ultrasound bone densitometry of the calcaneus in healthy Chinese children and adolescents. Osteoporosis International, 18(4), 533-541.
    Ziegenfuss, T. M., Lowery, L. M., & Lemon, P. W. R. (1998). Acute fluid volume changes in men during three days of creatine supplementation. Journal of Exercise Physiology, 1(3), 1-9.

    下載圖示
    QR CODE