Basic Search / Detailed Display

Author: 古耀方
Thesis Title: 界面活性劑於電化學沉積熱電材料之特性研究
Studies on electrochemical deposition characteristics of thermoelectric material with surfactant-added conditions
Advisor: 楊啟榮
Degree: 碩士
Master
Department: 機電工程學系
Department of Mechatronic Engineering
Thesis Publication Year: 2008
Academic Year: 96
Language: 中文
Number of pages: 110
Keywords (in Chinese): 熱電材料電化學沉積技術界面活性劑微型致冷器
Keywords (in English): Thermoelectric material, electrochemical deposition technology, surfactant-added technique, micro-cooler
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 297Downloads: 7
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 本研究結合電化學沉積技術與界面活性劑的添加,電鑄n-type Bi-Te及p-type Sb-Te熱電材料,探討界面活性劑對於熱電材料鑄層及熱電特性之影響;發展利用熱電材料塊材取代傳統白金鈦網做為陽極,進行電化學沉積熱電材料。之後利用最佳之參數,搭配黃光微影製程,進行微型致冷晶片之製作。
    在實驗之後驗證熱電材料塊材陽極比傳統白金鈦網陽極來的優異,係利用循環伏安法對離子濃度進行監測,發現熱電材料塊材陽極對於離子濃度有補充之作用,因此在長時間的電鑄,可使鑄層成份維持在正確的比例。
    本實驗以7.5 × 10-3 M之Bi2O3與10 × 10-3 M之TeO2,7.5 × 10-3 M之Sb2O3與10 × 10-3 M之TeO2金屬粉末,搭配陰離子型界面活性劑MA,鑄出n-type Bi-Te及p-type Sb-Te熱電材料。Bi-Te材料在MA界面活性劑的使用之下,表面粗糙度由原先之40.51 nm大幅降低為15.42 nm,沉積速率由原先之4 m/hr提升至9 m/hr,並成功的將沉積之最小線寬降低至5 m。Sb-Te材料在界面活性劑MA的添加下,對於熱電特性有良好的改善效果,席貝克係數由原先之136.4 V/K提升至526.7 V/K,同時也成功將所電鑄之最小線寬降低至5 m。

    The research represents electrochemical deposition technique with surfactant added to electroform n-type Bi-Te and p-type Sb-Te thermoelectric material. The effects of surfactant on electroformed film and thermoelectric characteristics were discussed in this thesis. Bulk thermoelectric material is used instead of Pt grid as anode for electroforming. Finally, better electroforming parameters were chosen for micro-cooler fabrication process.
    For experiment result, it is demonstrated that bulk thermoelectric material anode is better than Pt grid anode. The ion concentration in electrolyte was monitored by cyclic voltammetry method. It was found that bulk thermoelectric material could supply extra ion to electrolyte. Thus, after a long-time electroforming process, the composition of electroformed film could be controlled correctly.
    The concentration of Bi2O3, Sb2O3, and TeO2 metal powder was 7.5 × 10-3 M, 10 × 10-3 M, and 7.5 × 10-3 M, respectively. Anion surfactant, MA, was added in electrolyte to electroform thermoelectric material. In Bi-Te material, anion surfactant was added. The surface roughness decreased from 40.51 nm to 15.42 nm and deposition rate increased from 4 m/hr to 9 m/hr. The electroformed film could be completely deposited when the critical dimension was 5 m. In Sb-Te material, the thermoelectric characteristic could be improved and Seebeck coefficient increased from 136.4 V/K to 526.7 V/K and also completely deposited when the critical dimension was 5 m, too.

    中文摘要---------------------------------------------I 英文摘要--------------------------------------------II 總目錄---------------------------------------------III 圖目錄----------------------------------------------VI 表目錄----------------------------------------------XI 第一章 緒論-------------------------------------------1 1.1 前言---------------------------------------------1 1.2 熱電材料簡介--------------------------------------3 1.3 界面活性劑簡介------------------------------------4 1.4 微機電系統簡介------------------------------------8 1.5 研究動機與目的-----------------------------------10 第二章 理論探討與文獻回顧-----------------------------11 2.1 熱電效應----------------------------------------11 2.1.1 席貝克效應------------------------------------11 2.1.2 帕耳帖效應------------------------------------12 2.1.3 湯姆森效應------------------------------------13 2.2 熱電優值----------------------------------------16 2.3 電化學沉積原理-----------------------------------20 2.3.1 法拉第定律與電流效率------------------------20 2.3.2 電極電位與極化-----------------------------23 2.4 電化學沉積合金特點-------------------------------24 2.5 熱電材料製造技術---------------------------------25 2.6 傳統製造技術------------------------------------26 2.6.1 CZ法----------------------------------------26 2.6.2 布里茲曼法------------------------------------26 2.6.3 熱壓成形法------------------------------------27 2.6.4 熱擠壓成形法----------------------------------27 2.7 微加工製造技術----------------------------------30 2.7.1 物理氣相沉積法--------------------------------30 2.7.2 化學氣相沉積法--------------------------------30 2.7.3 火花電漿燒結法--------------------------------31 2.7.4 電化學沉積法----------------------------------32 第三章 實驗設計與規劃--------------------------------46 3.1 實驗規劃---------------------------------------46 3.2 實驗流程---------------------------------------50 3.2.1 黃光微影製程----------------------------------50 3.2.2 電鑄製程-------------------------------------50 3.3 製程與量測設備----------------------------------51 第四章 初步實驗結果與討論----------------------------63 4.1 白金鈦網與熱電材料塊材陽極之比較------------------63 4.1.1 白金鈦網與Bi2Te3塊材陽極比較-------------------63 4.1.2 白金鈦網與Sb2Te3塊材陽極比較-------------------64 4.2 不同陽極對於鑄液中離子濃度之差異------------------68 4.2.1不同陽極對於Bi-Te鑄液中離子濃度之差異------------68 4.2.2不同陽極對於Sb-Te鑄液中離子濃度之差異------------69 4.3 界面活性劑對鑄液表面張力之影響--------------------74 4.3.1 Bi-Te鑄液表面張力與界面活性劑之影響-------------74 4.3.2 Sb-Te鑄液表面張力與界面活性劑之影響-------------75 4.4 界面活性劑與熱電材料之影響------------------------81 4.4.1 Bi-Te與界面活性劑之關係------------------------81 4.4.2 Sb-Te與界面活性劑之關係------------------------83 4.5 微型致冷晶片之製作-------------------------------99 第五章 結論與未來展望--------------------------------106 5.1 結論-------------------------------------------106 5.2 未來展望----------------------------------------107 參考文獻--------------------------------------------108

    1. Microsoft, http://www.microsoft.com.
    2. 朱旭山, "熱電材料與元件之發展與應用", 工業材料雜誌, 第220期, 2005.
    3. http://www.marlow.com/
    4. http://www.sii.co.jp/
    5. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142, 2003.
    6. D. M. Rowe, "Thermoelectrics handbook micro to nano", 2006.
    7. D. J. Yao, "In-plane MEMS thermoelectric microcooler", Ph. D. dissertation of UCLA, USA, 2001.
    8. W. Ehrfeld, V. Hessel, H. Löwe, C Schulz, and L. Weber, "Materials of LIGA technology", Microsystem Technologies, Vol. 5, No. 3, pp. 105-112, 1999.
    9. http://www.en.oita-u.ac.jp/~miwaken/index.html
    10. L. D. Ivanova, Y. V. Granatkina, N. V. Polikarpova, and E. I. Smirnova, "Selenium-doped Sb2Te3-Bi2Te3 crystals", Inorganic Materials Vol. 33, pp. 558-561, 1997.
    11. L. D. Ivanova, Y. V. Granatkina, and N. V. Polikarpova, "Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system", Inorganic Materials, Vol. 31, pp. 678-681, 1995.
    12. L. D. Ivanova, S. A. Brovikova, H. Sussmann, and P. Reinshaus, "Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 single-crystals", Inorganic Materials, Vol. 31, pp. 682-686, 1995.
    13. A. Borshchevsky, "Handbook of thermoelectrics", 1995.
    14. O. Yamashita, S. Tomiyoshi, and K. Makita, "Bismuth telluride compounds with high thermoelectric figures of merit", Journal of Applied Physics, Vol. 93, Issue 1, January 1, pp. 368-374, 2003.
    15. D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, and C. W. Hwang, "Thermoelectric properties of the n-type 85 % Bi2Te3-15 % Bi2Se3 alloys doped with Sbl3 and CuBr", Journal of Materials Science Vol. 33, pp. 5595-5600, 1998.
    16. http://www.britannica.com/eb/article-76696/advanced-ceramics
    17. D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method", Journal of Materials Science Vol. 36, Number 5, pp. 1285-1291, 2001.
    18. B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, "High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity", Physical Review Letters Vol. 86, Issue 19, pp. 4350-4353, 2001.
    19. http://www.substech.com/dokuwiki/doku.php
    20. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature Vol. 413, pp. 597-602, 2001.
    21. J. Seo, K. Park, D. Lee, and C. Lee, "Microstructure and thermoelectric properties of p-type Bi0.5Sb0.5Te0.5 compounds fabricated by hot pressing and hot extrusion", Scripta Materialia, Vol. 38, Issue 3, pp. 477-484, 1998.
    22. D. H. Kim, E. Byon, G. H. Lee, and S. Cho, "Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering", Thin Solid Films Vol. 510, pp. 148-153, 2006.
    23. L. W. da Silva, M. Kaviany, and C. Uher, "Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems", Journal of Applied Physics, Vol. 97, pp. 114903.1-114903.10, 2005.
    24. L. M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, and J. H. Correia, " On-chip array of thermoelectric Peltier microcoolers", 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 2179-2182, 2007.
    25. http://www.answers.com/
    26. A. Boulouz, S. Chakraborty, A. Giani, F. P. Delannoy, and A. Boyer, "Transport properties of V-VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices", Journal of Applied Physics Vol. 89, No. 9, pp. 5009-5014, 2001.
    27. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, and A. Boyer, "Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD", Materials Science and Engineering B, Vol. 64, pp. 19-24, 1999.
    28. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, and A. Boyer, "MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor", Thin Solid Films Vol. 315, pp. 99-103, 1998.
    29. http://www.shi.co.jp/sps/eng/index.html
    30. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering", Scripta Materialia, Vol. 52, Issue 5, pp. 347-351, 2005.
    31. G. J. Snyder, J. R. Lim, C. K. Huang, and J. P. Fleurial, "Thermoelectric microdevice fabricated by MEMS-like electrochemical process", Nature Materials, Vol. 2, pp. 528-532, 2003.
    32. J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, and J. P. Fleurial, "Thermoelectric microdevice fabrication process and evaluation at the jet propulsion laboratory (JPL)", 21th International Conference of Thermoelectrics, pp. 535-539, 2002.
    33. J. P. Fleurial, A. Borshchevsky, M. A. Ryan, W. M. Philips, J. G. Snyder, T. Caillat, E. A. Kolawa, J. A. Herman, P. Mueller, and M. Nicolet, "Development of thick-Film thermoelectric microcoolers using electrochemical deposition", Materials Research Society Symposium Proceedings, Vol. 545, pp. 493-500, 1998.
    34. J. P. Fleurial, G. J. Snyder, J. A. Herman, P. H. Giauque, W. M. Phillips, M. A. Ryan, P. Shakkottai, E. A. Kolawa, and M. A. Nicolet, "Thick-film thermoelectric microdvices", 18th International Conference of Thermoelectrics, pp. 294-300, 1999.
    35. Q. Huang, A. J. Kellock, and S. Raoux, "Electrodeposition of SbTe phase-change alloys", J. Electrochem. Soc., Vol. 155, pp. D104-D109, 2008.
    36. C. H. Lim, K. T. Kim, Y. H. Kim, Y. S. Lee, C. H. Lee, D. C. Cho, and C. H. Lee, "Effect of powder mixing on thermoelectric properties in Bi2Te3-based sintered compounds", Intermetallics, Vol. 14, pp. 1370-1374, 2006.

    下載圖示
    QR CODE