Author: |
施廷翰 Tin-Han Shih |
---|---|
Thesis Title: |
Rh蛋白在斑馬魚胚胎皮膚的功能 The Function of Rh Proteins in the Skin of Zebrafish (Danio rerio) Larvae |
Advisor: |
林豊益
Lin, Li-Yih |
Degree: |
博士 Doctor |
Department: |
生命科學系 Department of Life Science |
Thesis Publication Year: | 2013 |
Academic Year: | 101 |
Language: | 英文 |
Number of pages: | 98 |
Keywords (in Chinese): | 斑馬魚 、氨 、Rh蛋白 、二氧化碳 、皮膚 、氫幫浦蛋白 |
Keywords (in English): | Zebrafish, Ammonia, Rh protein, CO2, skin, H+-ATPase |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 77 Downloads: 2 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
Rh蛋白是在脊椎動物中發現的氣體通道蛋白,被認為具有運輸氨以及二氧化碳的能力。在魚類中,鰓(成魚)以及皮膚(胚胎仔魚)都是主要用來呼吸的器官,但是目前仍不確定是由何種特定細胞來執行排氨以及二氧化碳的功能,也尚未清楚Rh蛋白在其中扮演的角色。在我的研究中,我將利用斑馬魚胚胎,證明Rh蛋白參與皮膚氨以及二氧化碳運輸的功能。
在第一章的研究中,我以螢光免疫染色證明Rhcg1表現在富含氫幫浦細胞(HR cell)的頂端細胞膜上。利用SIET分析仔魚體表細胞的排氨功能後發現,HR cell比它型表皮細胞具有更強的排氨能力,而此排氨能力也隨抑制Rhcg1的表現而顯著降低。我也發現HR cell在高氨下仍可維持排氨作用,但若是抑制氫幫浦(H+-ATPase)或Rhcg1的表現則會使得HR cell失去高氨下的排氨能力,顯示H+-ATPase以及Rhcg1是HR cell執行主動排氨的關鍵分子。
我在第二章要探討排氨以及鈉離子吸收的運輸機制。透過高氨環境抑制排氨將使得鈉離子吸收能力降低。而增加鈉離子的吸收後則使排氨量增加,顯示氨與鈉離子的運輸息息相關。抑制了Rhcg1以及鈉氫交換蛋白(Na+/H+ exchanger, NHE3b)的表現後發現排氨與吸鈉量皆降低。抑制這兩蛋白也影響了體內鈉離子的含量,顯示Rhcg1以及NHE3b是魚類進行排氨依賴性的鈉離子吸收機制的重要蛋白。
於第三章我將分析另一Rh蛋白Rhbg在仔魚皮膚上的分布與功能。利用原位雜交以及免疫螢光染色我證明Rhbg表現在皮膚keratinocyte頂端與底側端的細胞膜上。與抑制Rhcg1相比,抑制了Rhbg的表現會造成更嚴重的排氨能力失調,顯示Rhbg對於排氨的影響更大。然而,Rhbg的抑制將造成Rhcg1的表現增加以及HR cell排氨能力的提升,這些現象說明補償性的排氨機制是藉由HR cell來調節。
在最後的章節中,我分析了仔魚皮膚Rh蛋白與二氧化碳運輸的相關性。研究發現利用高氨環境會抑制二氧化碳的排放,而高碳酸水也會降低氨的排放量,顯示二氧化碳與氨可能透過同一路徑排放。抑制了Rhbg蛋白會顯著降低二氧化碳排放量,但抑制Rhcg1則不會造成此現象。本實驗也利用H+探針測量表皮二氧化碳的水合(產生H+)與碳酸的水解(減少H+),藉以分析細胞膜對於二氧化碳的通透性。在高碳酸水的浸泡實驗中,抑制Rhbg將減少體表鹼化的程度,說明較少的二氧化碳通過表皮。這些數據證實Rhbg是魚類排放二氧化碳的重要路徑。
Rhesus glycoproteins (Rh proteins) are the gas channels in vertebrates, and were suggested to conduct ammonia and CO2. In fish, adult gill and larva skin are the organs responsible for gas transport, but the specific cell types for ammonia or CO2 excretion were not identified yet. It is also unclear whether Rh proteins are involved in fish gas excretion? In present study, I use zebrafish larval as animal model to demonstrate the gas excretion function of Rh proteins in skin epithelium.
In chapter 1, I used SIET to examine the ammonia excretion ability of skin epithelial cells. The subcellular localization of Rhcg1 was also demonstrated by immunohistochemistry. Results showed that Rhcg1 was distributed in the apical membrane of HR cell. The HR cells exhibited a stronger ammonia efflux than other cell types (keratinocytes and non-HR ionocytes) and the efflux was significant reduced after transcriptional knockdown of Rhcg1 by Rhcg1-antisense morpholino (MO). Under high ammonia environment, HR cell was able to exhibit ammonia efflux, suggesting that HR cell actively excrete ammonia.
In chapter 2, an ammonium-dependant Na+ uptake mechanism was demonstrated. The inhibition of ammonia excretion caused a significant decrease of Na+ uptake. Induce of Na+ uptake by high Na+ environment increase ammonia excretion, indicating a linkage of Na+ uptake to ammonia. Knockdown of Rhcg1 or Na+/H+ exchanger (NHE3b) impaired both ammonia excretion and Na+ uptake. The larvae Na+ content was also reduced in the MO-injected larvae. These results suggested that Rhcg1 and NHE3b are the key molecules in this Na+ uptake mechanism.
In chapter 3, I analyzed the expression and function of Rhbg in the skin of zebrafish larvae. The results of in situ hybridization and immunohistochemistry showed that Rhbg were expressed at the apical and basolateral membrane of keratinocytes. Knockdown of Rhbg inhibited the ammonia efflux in keratinocytes and caused a severe deficient in total ammonia excretion. On the other hand, Rhbg MO induced the expression of Rhcg1 and elevated the NH4+ efflux in HR cells, suggesting a compensatory effect was occurred.
The involvement of Rh proteins in CO2 excretion was showed in chapter 4. In this chapter, CO2 excretion was inhibited in the larvae treated with high ammonia environment. On the other hand, environmental hypercapnia inhibit ammonia excretion as well, suggesting that CO2 shared common pathway of ammonia. The knockdown of Rhbg but not Rhcg1 impaired the CO2 excretion, revealing that Rhbg is important for CO2 transport. I used H+ probe to analyze the hydration/dehydration of surface CO2/HCO3- and determined the membrane permeability to CO2. While exposing to hypercapnia, the change of surface pH was reduced in Rhbg MO-injected larvae, indicating that Rhbg regulated the CO2 permeability.
Akgun, U. and Khademi, S. (2011). Periplasmic vestibule plays an important role for solute recruitment, selectivity, and gating in the Rh/Amt/MEP superfamily. Proc Natl Acad Sci U S A 108, 3970-5.
Avella, M. and Bornancin, M. (1989). A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142, 155-175.
Bakouh, N., Benjelloun, F., Cherif-Zahar, B. and Planelles, G. (2006). The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfus Clin Biol 13, 139-46.
Barrionuevo, W. R. and Burggren, W. W. (1999). O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am J Physiol 276, R505-13.
Biver, S., Belge, H., Bourgeois, S., Van Vooren, P., Nowik, M., Scohy, S., Houillier, P., Szpirer, J., Szpirer, C., Wagner, C. A. et al. (2008). A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456, 339-43.
Boron, W. F. (2010). Sharpey-Schafer lecture: gas channels. Exp Physiol 95, 1107-30.
Boron, W. F., Endeward, V., Gros, G., Musa-Aziz, R. and Pohl, P. (2011). Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels. Chemphyschem 12, 1017-9.
Braun, M. H., Steele, S. L., Ekker, M. and Perry, S. F. (2009a). Nitrogen excretion in developing zebrafish (Danio rerio): a role for Rh proteins and urea transporters. Am J Physiol Renal Physiol 296, F994-F1005.
Braun, M. H., Steele, S. L. and Perry, S. F. (2009b). The responses of zebrafish (Danio rerio) to high external ammonia and urea transporter inhibition: nitrogen excretion and expression of rhesus glycoproteins and urea transporter proteins. J Exp Biol 212, 3846-56.
Brown, A. C., Hallouane, D., Mawby, W. J., Karet, F. E., Saleem, M. A., Howie, A. J. and Toye, A. M. (2009). RhCG is the major putative ammonia transporter expressed in the human kidney, and RhBG is not expressed at detectable levels. Am J Physiol Renal Physiol 296, F1279-90.
Chadwick, T. D. and Wright, P. A. (1999). Nitrogen excretion and expression of urea cycle enzymes in the atlantic cod (Gadus morhua l.): a comparison of early life stages with adults. J Exp Biol 202 (Pt 19), 2653-62.
Chang, W. J. and Hwang, P. P. (2011). Development of zebrafish epidermis. Birth Defects Res C Embryo Today 93, 205-14.
Donini, A. and O'Donnell, M. J. (2005). Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 208, 603-10.
Eladari, D., Cheval, L., Quentin, F., Bertrand, O., Mouro, I., Cherif-Zahar, B., Cartron, J. P., Paillard, M., Doucet, A. and Chambrey, R. (2002). Expression of RhCG, a new putative NH3/NH4+ transporter, along the rat nephron. J Am Soc Nephrol 13, 1999-2008.
Endeward, V., Cartron, J. P., Ripoche, P. and Gros, G. (2006a). Red cell membrane CO2 permeability in normal human blood and in blood deficient in various blood groups, and effect of DIDS. Transfus Clin Biol 13, 123-7.
Endeward, V., Cartron, J. P., Ripoche, P. and Gros, G. (2008). RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J 22, 64-73.
Endeward, V. and Gros, G. (2005). Low carbon dioxide permeability of the apical epithelial membrane of guinea-pig colon. J Physiol 567, 253-65.
Endeward, V., Musa-Aziz, R., Cooper, G. J., Chen, L. M., Pelletier, M. F., Virkki, L. V., Supuran, C. T., King, L. S., Boron, W. F. and Gros, G. (2006b). Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20, 1974-81.
Esaki, M., Hoshijima, K., Kobayashi, S., Fukuda, H., Kawakami, K. and Hirose, S. (2007). Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol Regul Integr Comp Physiol 292, R470-80.
Esaki, M., Hoshijima, K., Nakamura, N., Munakata, K., Tanaka, M., Ookata, K., Asakawa, K., Kawakami, K., Wang, W., Weinberg, E. S. et al. (2009). Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae. Dev Biol 329, 116-29.
Esbaugh, A. J. and Tufts, B. L. (2006). The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respir Physiol Neurobiol 154, 185-98.
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Gilmour, K. M. and Perry, S. F. (2009). Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 212, 1647-61.
Gilmour, K. M. and Perry, S. F. (2010). Gas transfer in dogfish: a unique model of CO2 excretion. Comp Biochem Physiol A Mol Integr Physiol 155, 476-85.
Gilmour, K. M., Thomas, K., Esbaugh, A. J. and Perry, S. F. (2009). Carbonic anhydrase expression and CO2 excretion during early development in zebrafish Danio rerio. J Exp Biol 212, 3837-45.
Glover, C. N., Bucking, C. and Wood, C. M. (2013). The skin of fish as a transport epithelium: a review. J Comp Physiol B.
Gutknecht, J., Bisson, M. A. and Tosteson, F. C. (1977). Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol 69, 779-94.
Han, K. H., Kim, H. Y. and Weiner, I. D. (2009a). Expression of rh glycoproteins in the Mammalian kidney. Electrolyte Blood Press 7, 14-9.
Han, K. H., Mekala, K., Babida, V., Kim, H. Y., Handlogten, M. E., Verlander, J. W. and Weiner, I. D. (2009b). Expression of the gas-transporting proteins, Rh B glycoprotein and Rh C glycoprotein, in the murine lung. Am J Physiol Lung Cell Mol Physiol 297, L153-63.
Handlogten, M. E., Hong, S. P., Zhang, L., Vander, A. W., Steinbaum, M. L., Campbell-Thompson, M. and Weiner, I. D. (2005). Expression of the ammonia transporter proteins Rh B glycoprotein and Rh C glycoprotein in the intestinal tract. Am J Physiol Gastrointest Liver Physiol 288, G1036-47.
Henriksen, G. H., Bloom, A. J. and Spanswick, R. M. (1990). Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. Plant Physiol 93, 271-80.
Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Wakabayashi, S., Shigekawa, M., Chang, M. H., Romero, M. F. et al. (2003). Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284, R1199-212.
Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. and Kaneko, T. (2008). Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211, 2584-2599.
Horng, J. L., Lin, L. Y., Huang, C. J., Katoh, F., Kaneko, T. and Hwang, P. P. (2007). Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292, R2068-76.
Huang, C. H. and Peng, J. (2005). Evolutionary conservation and diversification of Rh family genes and proteins. Proc Natl Acad Sci U S A 102, 15512-7.
Huang, C. H. and Ye, M. (2010). The Rh protein family: gene evolution, membrane biology, and disease association. Cell Mol Life Sci 67, 1203-18.
Hung, C. Y., Tsui, K. N., Wilson, J. M., Nawata, C. M., Wood, C. M. and Wright, P. A. (2007). Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air. J Exp Biol 210, 2419-29.
Hwang, P. P. (2009). Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212, 1745-52.
Hwang, P. P. and Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-97.
Hwang, P. P., Lee, T. H. and Lin, L. Y. (2011). Ion Regulation in Fish Gills: Recent Progress in the Cellular and Molecular Mechanisms. Am J Physiol Regul Integr Comp Physiol.
Ip, Y. K. and Chew, S. F. (2010). Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1, 134.
Ip, Y. K., Loong, A. M., Kuah, J. S., Sim, E. W., Chen, X. L., Wong, W. P., Lam, S. H., Delgado, I. L., Wilson, J. M. and Chew, S. F. (2012). Roles of three branchial Na+-K+-ATPase alpha-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am J Physiol Regul Integr Comp Physiol 303, R112-25.
Itel, F., Al-Samir, S., Oberg, F., Chami, M., Kumar, M., Supuran, C. T., Deen, P. M., Meier, W., Hedfalk, K., Gros, G. et al. (2012). CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J 26, 5182-91.
Ito, Y., Kobayashi, S., Nakamura, N., Miyagi, H., Esaki, M., Hoshijima, K. and Hirose, S. (2013). Close Association of Carbonic Anhydrase (CA2a and CA15a), Na+/H+ Exchanger (Nhe3b), and Ammonia Transporter Rhcg1 in Zebrafish Ionocytes Responsible for Na+ Uptake. Front Physiol 4, 59.
Ivanis, G., Esbaugh, A. J. and Perry, S. F. (2008). Branchial expression an localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211, 2467-2477.
Katoh, F., Hyodo, S. and Kaneko, T. (2003). Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment. J Exp Biol 206, 793-803.
Kerstetter, T. H., Kirschner, L. B. and Rafuse, D. D. (1970). On the mechanisms of sodium ion transport by the irrigated gills of rainbow trout (Salmo gairdneri). J Gen Physiol 56, 342-59.
Khademi, S., O'Connell, J., 3rd, Remis, J., Robles-Colmenares, Y., Miercke, L. J. and Stroud, R. M. (2004). Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305, 1587-94.
Kikeri, D., Sun, A., Zeidel, M. L. and Hebert, S. C. (1989). Cell membranes impermeable to NH3. Nature 339, 478-80.
Kirschner, L. B., Greenwald, L. and Kerstetter, T. H. (1973). Effect of amiloride on sodium transport across body surfaces of freshwater animals. Am J Physiol 224, 832-7.
Krogh, A. (1938). The active absorption of ions in some freshwater animals. J comp physiol A 25, 335-350.
Kumai, Y. and Perry, S. F. (2011). Ammonia excretion via Rhcg1 facilitates Na+ uptake in larval zebrafish, Danio rerio, in acidic water. Am J Physiol Regul Integr Comp Physiol.
Laurent, P. and Dunel, S. (1980). Morphology of gill epithelia in fish. Am J Physiol 238, R147-59.
Lee, H. W., Verlander, J. W., Bishop, J. M., Igarashi, P., Handlogten, M. E. and Weiner, I. D. (2009). Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion. Am J Physiol Renal Physiol 296, F1364-75.
Lee, Y. C., Yan, J. J., Cruz, S. A., Horng, J. L. and Hwang, P. P. (2011). Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 300, C295-307.
Liao, B. K., Chen, R. D. and Hwang, P. P. (2009). Expression regulation of Na+-K+-ATPase alpha1-subunit subtypes in zebrafish gill ionocytes. Am J Physiol Regul Integr Comp Physiol 296, R1897-906.
Lin, C. C., Lin, L. Y., Hsu, H. H., Thermes, V., Prunet, P., Horng, J. L. and Hwang, P. P. (2012). Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Regul Integr Comp Physiol 302, R283-91.
Lin, L. Y., Horng, J. L., Kunkel, J. G. and Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290, C371-8.
Lin, T. Y., Liao, B. K., Horng, J. L., Yan, J. J., Hsiao, C. D. and Hwang, P. P. (2008). Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 294, C1250-60.
Liu, Z., Peng, J., Mo, R., Hui, C. and Huang, C. H. (2001). Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 276, 1424-33.
Marini, A. M., Soussi-Boudekou, S., Vissers, S. and Andre, B. (1997). A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17, 4282-93.
Marini, A. M., Vissers, S., Urrestarazu, A. and Andre, B. (1994). Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J 13, 3456-63.
McDonald, D. G. and Millsgan, C. L. (1988). Sodium transporter in the brook trout, Salvelinus fontinalis: effects of prolonged low pH exposure in the presence and absence of aluminum. Can J Fish Aauat Sci 45, 1606-1613.
Missner, A., Kugler, P., Antonenko, Y. N. and Pohl, P. (2008a). Passive transport across bilayer lipid membranes: Overton continues to rule. Proc Natl Acad Sci U S A 105, E123; author reply E124.
Missner, A., Kugler, P., Saparov, S. M., Sommer, K., Mathai, J. C., Zeidel, M. L. and Pohl, P. (2008b). Carbon dioxide transport through membranes. J Biol Chem 283, 25340-7.
Musa-Aziz, R., Chen, L. M. and Boron, W. F. (2007). The CO2/NH3 selectivity of AQP1, AQP4, and AQP5 and now it is affected by DIDS. J Am Soc Nephrol 18.
Musa-Aziz, R., Chen, L. M., Pelletier, M. F. and Boron, W. F. (2009a). Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106, 5406-11.
Musa-Aziz, R., Jiang, L., Chen, L. M., Behar, K. L. and Boron, W. F. (2009b). Concentration-dependent effects on intracellular and surface pH of exposing Xenopus oocytes to solutions containing NH3/NH4+. J Membr Biol 228, 15-31.
Nagami, G. T. (1988). Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest 81, 159-64.
Nakada, T., Hoshijima, K., Esaki, M., Nagayoshi, S., Kawakami, K. and Hirose, S. (2007a). Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol 293, R1743-53.
Nakada, T., Westhoff, C. M., Kato, A. and Hirose, S. (2007b). Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21, 1067-74.
Nakada, T., Westhoff, C. M., Yamaguchi, Y., Hyodo, S., Li, X., Muro, T., Kato, A., Nakamura, N. and Hirose, S. (2010). Rhesus glycoprotein p2 (Rhp2) is a novel member of the Rh family of ammonia transporters highly expressed in shark kidney. J Biol Chem 285, 2653-64.
Nakhoul, N. L., Davis, B. A., Romero, M. F. and Boron, W. F. (1998). Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol 274, C543-8.
Nakhoul, N. L. and Hamm, L. L. (2004). Non-erythroid Rh glycoproteins: a putative new family of mammalian ammonium transporters. Pflugers Arch 447, 807-12.
Nawata, C. M., Hirose, S., Nakada, T., Wood, C. M. and Kato, A. (2010). Rh glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during high environmental ammonia exposure. J Exp Biol 213, 3150-60.
Nawata, C. M., Hung, C. C., Tsui, T. K., Wilson, J. M., Wright, P. A. and Wood, C. M. (2007). Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31, 463-74.
Parks, S. K., Tresguerres, M. and Goss, G. G. (2008). Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol C Toxicol Pharmacol 148, 411-8.
Payan, P. (1978). A study of the Na+/NH4+ exchange across the gill of perfused head of the trout (Salmo gairdneri). J Comp Physiol 124, 181-188.
Prasad, G. V., Coury, L. A., Finn, F. and Zeidel, M. L. (1998). Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273, 33123-6.
Purkerson, J. M. and Schwartz, G. J. (2007). The role of carbonic anhydrases in renal physiology. Kidney Int 71, 103-15.
Quentin, F., Eladari, D., Cheval, L., Lopez, C., Goossens, D., Colin, Y., Cartron, J. P., Paillard, M. and Chambrey, R. (2003). RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J Am Soc Nephrol 14, 545-54.
Randall, D. J. and Ip, Y. K. (2006). Ammonia as a respiratory gas in water and air-breathing fishes. Respir Physiol Neurobiol 154, 216-25.
Randall, D. J. and Tsui, T. K. (2006). Tribute to R. G. Boutilier: acid-base transfer across fish gills. J Exp Biol 209, 1179-84.
Randall, D. J., Wilson, J. M., Peng, K. W., Kok, T. W., Kuah, S. S., Chew, S. F., Lam, T. J. and Ip, Y. K. (1999). The mudskipper, Periophthalmodon schlosseri, actively transports NH4+ against a concentration gradient. Am J Physiol 277, R1562-7.
Ripoche, P., Bertrand, O., Gane, P., Birkenmeier, C., Colin, Y. and Cartron, J. P. (2004). Human Rhesus-associated glycoprotein mediates facilitated transport of NH3 into red blood cells. Proc Natl Acad Sci U S A 101, 17222-7.
Salama, A., Morgan, I. J. and Wood, C. M. (1999). The linkage between Na+ uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH. J Exp Biol 202 (Pt 6), 697-709.
Seshadri, R. M., Klein, J. D., Kozlowski, S., Sands, J. M., Kim, Y. H., Han, K. H., Handlogten, M. E., Verlander, J. W. and Weiner, I. D. (2006). Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 290, F397-408.
Shen, W. P., Horng, J. L. and Lin, L. Y. (2011). Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. Am J Physiol Regul Integr Comp Physiol 300, R858-68.
Shih, T. H., Horng, J. L., Hwang, P. P. and Lin, L. Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295, C1625-32.
Shih, T. H., Horng, J. L., Liu, S. T., Hwang, P. P. and Lin, L. Y. (2012). Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol Regul Integr Comp Physiol 302, R84-93.
Verlander, J. W., Miller, R. T., Frank, A. E., Royaux, I. E., Kim, Y. H. and Weiner, I. D. (2003). Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am J Physiol Renal Physiol 284, F323-37.
Waisbren, S. J., Geibel, J. P., Modlin, I. M. and Boron, W. F. (1994). Unusual permeability properties of gastric gland cells. Nature 368, 332-5.
Wang, Y. F., Tseng, Y. C., Yan, J. J., Hiroi, J. and Hwang, P. P. (2009). Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296, R1650-60.
Weihrauch, D., Chan, A. C., Meyer, H., Doring, C., Sourial, M. and O'Donnell, M. J. (2012a). Ammonia excretion in the freshwater planarian Schmidtea mediterranea. J Exp Biol 215, 3242-53.
Weihrauch, D., Donini, A. and O'Donnell, M. J. (2012b). Ammonia transport by terrestrial and aquatic insects. J Insect Physiol 58, 473-87.
Weihrauch, D., Wilkie, M. P. and Walsh, P. J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol 212, 1716-30.
Weiner, I. D. and Hamm, L. L. (2007). Molecular mechanisms of renal ammonia transport. Annu Rev Physiol 69, 317-40.
Weiner, I. D. and Verlander, J. W. (2011). Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol 300, F11-23.
Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293, 284-301.
Wilkie, M. P. and Wood, C. M. (1994). The effects of extremely alkaline water (pH 9.5) on rainbow trout gill function and morphology. J Fish Biol 45, 87-98.
Wilson, J. M. and Laurent, P. (2002). Fish gill morphology: inside out. J Exp Zool 293, 192-213.
Wilson, J. M., Randall, D. J., Donowitz, M., Vogl, A. W. and Ip, A. K. (2000). Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). J Exp Biol 203, 2297-310.
Wilson, R. W., Wright, P. M., Munger, S. and Wood, C. M. (1994). Ammonia excretion in freshwater rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary layer acidification : lack of evidence for Na+/NH4+ exchange. J Exp Biol 191, 37-58.
Wood, C. M. and Nawata, C. M. (2011). A nose-to-nose comparison of the physiological and molecular responses of rainbow trout to high environmental ammonia in seawater versus freshwater. J Exp Biol 214, 3557-69.
Wright, P., Felskie, A. and Anderson, P. (1995). Induction of ornithine-urea cycle enzymes and nitrogen metabolism and excretion in rainbow trout (Oncorhynchus mykiss) during early life stages. J Exp Biol 198, 127-35.
Wright, P. A., Randall, D. J. and Perry, S. F. (1989). Fish gill water boundary layer: a site of linkage between carbon dioxide and ammonia excretion. . J Comp Physiol 158, 627-635.
Wright, P. A. and Wood, C. M. (1985). An analysis of branchial ammonia excretion in the freshwater rainbow trout: effects of environmental pH change and sodium uptake blockage. J Exp Biol 114, 329-353.
Wright, P. A. and Wood, C. M. (2009). A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol 212, 2303-12.
Wu, S. C., Horng, J. L., Liu, S. T., Hwang, P. P., Wen, Z. H., Lin, C. S. and Lin, L. Y. (2010). Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298, C237-50.
Yan, J. J., Chou, M. Y., Kaneko, T. and Hwang, P. P. (2007). Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293, C1814-23.