Author: |
林宸韜 Lin, Chen-Tau |
---|---|
Thesis Title: |
以全基因組定序資料探討山紅頭的重複性海拔適應 The parallel altitudinal adaptation of rufous-capped babblers (Cyanoderma ruficeps) in Taiwan based on whole genome sequencing data |
Advisor: |
洪志銘
Hung, Chih-Ming 李壽先 Li, Shou-Hsien |
Degree: |
碩士 Master |
Department: |
生命科學系 Department of Life Science |
Thesis Publication Year: | 2020 |
Academic Year: | 108 |
Language: | 英文 |
Number of pages: | 46 |
Keywords (in Chinese): | 全基因定序 、族群遺傳 、適應 、海拔適應 |
Keywords (in English): | whole genome sequence, population genetics, adpatation, altitudinal adaptation |
DOI URL: | http://doi.org/10.6345/NTNU202000074 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 112 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
適應是一種因選汰壓力使得族群更適合環境的過程,期間往往伴隨著族群遺傳變異的改變。然而,適應演化的可預測性充滿爭議。本研究以山紅頭作為研究材料,探討適應的重複性;在這研究當中,我以基因差異指數FST為基礎的族群遺傳統計方法分析了來自台灣西部的集集與玉山塔塔加、東部的花蓮崇德與合歡山大禹嶺四個地點各十隻山紅頭的全基因體定序資料,共一千六百多萬個單核甘酸多態性(Single Nucleotide Polymorphism,簡稱SNP)位點,來尋找在高低海拔分布的山紅頭基因組中高度分化的區域。這些高分化的基因組區域可能包含造成山紅頭分別在東部與西部台灣海拔適應的基因,將有助於了解對生物如何產生重複性海拔適應(parallel altitudinal adaptation)。分析結果發現,東部與西部的山紅頭族群在各自高度分化的基因當中,共享了約3%的受選擇基因,顯示台灣的山紅頭在海拔適應上,具有基因層面的重複性不高。而在這些基因當中,含有與血管新生有關的基因,可以解釋的山紅頭海拔適應的部分生理機制。
Adaptation is a process, through which populations improve their survivorship or production in a given environment due to genetic changes shaped by selection. However, the predictability of adaptation is controversial. In this study, I used the altitudinal adaptation of the rufous-capped babbler (Cyanoderma ruficeps) as our research system to examine the predictability of adaptation. I examined the genomic bases of physiological adaptation in the rufous-capped babbler. Ten babblers were collected from each of the Jiji (lowland) and the Tataka (montane) populations in western Taiwan and the Chongde (lowland) and the Dayuling (montane) populations in eastern Taiwan. I analyzed more than 16 million single nucleotide polymorphism (SNP) sites across the whole genomes of these babblers to search highly differentiation genomic regions between high and low altitudinal populations using FST- and Da-based population genetic approaches. The differentiated regions likely contained genes contributing to the altitudinal adaptation of this bird in eastern and western Taiwan, respectively. Based on the results, I examined the repeatability of altitudinal adaptation of this bird at the genomic level. I found that around 3% of altitudinally divergent genes were shared between eastern and western groups, suggesting a low level of genetic repeatability in the parallel altitudinal adaptation of rufous-capped babblers. Some of these common outlier genes were related to angiogenesis, which can partially explain the physiological mechanism of their altitudinal adaptation.
Bigham, A. W., M. J. Wilson, et al. (2013). "Andean and Tibetan patterns of adaptation to high altitude." American Journal of Human Biology 25(2): 190-197.
Bolger, A. M., M. Lohse, et al. (2014). "Trimmomatic: a flexible trimmer for Illumina sequence data." Bioinformatics 30(15): 2114-2120.
Bowler, P. J. (2009). "Darwin’s Originality." Science 323(5911): 223.
Brookes, A. J. (1999). "The essence of SNPs." Gene 234(2): 177-186.
Burri, R. (2017). "Linked selection, demography and the evolution of correlated genomic landscapes in birds and beyond." Mol Ecol 26(15): 3853-3856.
Cai, Q., X. Qian, et al. (2013). "Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude." Genome Biology 14(3): R29.
Chang, C. C., C. C. Chow, et al. (2015). "Second-generation PLINK: rising to the challenge of larger and richer datasets." Gigascience 4: 7.
Cheviron, Z. A. and R. T. Brumfield (2011). "Genomic insights into adaptation to high-altitude environments." Heredity 108: 354.
Cheviron, Z. A., A. Whitehead, et al. (2008). "Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient." Molecular Ecology 17(20): 4556-4569.
Conte, G. L., M. E. Arnegard, et al. (2012). "The probability of genetic parallelism and convergence in natural populations." Proc Biol Sci 279(1749): 5039-5047.
Crawford, J. E., R. Amaru, et al. (2017). "Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans." The American Journal of Human Genetics 101(5): 752-767.
Cruickshank, T. E. and M. W. Hahn (2014). "Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow." Mol Ecol 23(13): 3133-3157.
Danecek, P., A. Auton, et al. (2011). "The variant call format and VCFtools." Bioinformatics 27(15): 2156-2158.
Danecek, P. and S. A. McCarthy (2017). "BCFtools/csq: haplotype-aware variant consequences." Bioinformatics 33(13): 2037-2039.
Fan, L., T. Cai, et al. (2019). "Bergmann’s rule and Allen’s rule in two passerine birds in China." Avian Research 10(1): 34.
Gamazon, E. R. and B. E. Stranger (2014). "Genomics of alternative splicing: evolution, development and pathophysiology." Human Genetics 133(6): 679-687.
Ghalambor, C. K., K. L. Hoke, et al. (2015). "Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature." Nature 525(7569): 372-375.
Goodman, G. and D. Bercovich (2008). "Melanin directly converts light for vertebrate metabolic use: Heuristic thoughts on birds, Icarus and dark human skin." Medical Hypotheses 71(2): 190-202.
Ha, C. H. and Z. G. Jin (2009). "Protein kinase D1, a new molecular player in VEGF signaling and angiogenesis." Molecules and cells 28(1): 1-5.
Hermisson, J. and P. S. Pennings (2017). "Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation." Methods in Ecology and Evolution 8(6): 700-716.
Ivy, C. M. and G. R. Scott (2015). "Control of breathing and the circulation in high-altitude mammals and birds." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 186: 66-74.
Jo, B.-S. and S. S. Choi (2015). "Introns: The Functional Benefits of Introns in Genomes." Genomics & informatics 13(4): 112-118.
Keller, I., J. M. Alexander, et al. (2013). "Widespread phenotypic and genetic divergence along altitudinal gradients in animals." Journal of Evolutionary Biology 26(12): 2527-2543.
Kesari, R., J. R. Lasky, et al. (2012). "Intron-mediated alternative splicing of <em>Arabidopsis P5CS1</em> and its association with natural variation in proline and climate adaptation." Proceedings of the National Academy of Sciences 109(23): 9197.
Korner, C. (2007). "The use of 'altitude' in ecological research." Trends Ecol Evol 22(11): 569-574.
Kumar, S., G. Stecher, et al. (2016). "MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets." Mol Biol Evol 33(7): 1870-1874.
Lai, Y. T., C. K. L. Yeung, et al. (2019). "Standing genetic variation as the predominant source for adaptation of a songbird." Proc Natl Acad Sci U S A 116(6): 2152-2157.
Le Duc, D. and T. Schoneberg (2016). "Adaptation to nocturnality - learning from avian genomes." Bioessays 38(7): 694-703.
Li, H. and R. Durbin (2009). "Fast and accurate short read alignment with Burrows-Wheeler transform." Bioinformatics 25(14): 1754-1760.
Li, H., B. Handsaker, et al. (2009). "The Sequence Alignment/Map format and SAMtools." Bioinformatics 25(16): 2078-2079.
Li, S., D. Li, et al. (2017). "A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken." PLOS ONE 12(2): e0172211.
Marti, H. H. (2005). Angiogenesis — a self-adapting principle in hypoxia. Mechanisms of Angiogenesis. M. Clauss and G. Breier. Basel, Birkhäuser Basel: 163-180.
McKenna, A., M. Hanna, et al. (2010). "The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data." Genome Res 20(9): 1297-1303.
Messer, P. W. and D. A. Petrov (2013). "Population genomics of rapid adaptation by soft selective sweeps." Trends Ecol Evol 28(11): 659-669.
Natarajan, C., F. G. Hoffmann, et al. (2016). "Predictable convergence in hemoglobin function has unpredictable molecular underpinnings." Science 354(6310): 336.
Nei, M. (1987). Molecular evolutionary genetics. United States, Columbia University Press,New York, NY.
Pearson, K. and F. Galton (1895). "VII. Note on regression and inheritance in the case of two parents." Proceedings of the Royal Society of London 58(347-352): 240-242.
Pfeifer, B., U. Wittelsburger, et al. (2014). "PopGenome: an efficient Swiss army knife for population genomic analyses in R." Mol Biol Evol 31(7): 1929-1936.
Poplin, R., V. Ruano-Rubio, et al. (2018). "Scaling accurate genetic variant discovery to
tens of thousands of samples."
Projecto-Garcia, J., C. Natarajan, et al. (2013). "Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds." Proceedings of the National Academy of Sciences 110(51): 20669.
Qu, Y., S. Tian, et al. (2015). "Genetic responses to seasonal variation in altitudinal stress: whole-genome resequencing of great tit in eastern Himalayas." Sci Rep 5: 14256.
Qu, Y., H. Zhao, et al. (2013). "Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau." Nature Communications 4: 2071.
Quinlan, A. R. and I. M. Hall (2010). "BEDTools: a flexible suite of utilities for comparing genomic features." Bioinformatics 26(6): 841-842.
Ravinet, M., A. Westram, et al. (2016). "Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale." Molecular Ecology 25(1): 287-305.
Reid, N. M., D. A. Proestou, et al. (2016). "The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish." Science 354(6317): 1305.
Rosenblum, E. B. and L. J. Harmon (2011). ""Same same but different": replicated ecological speciation at White Sands." Evolution 65(4): 946-960.
Scott, G. R. (2011). "Elevated performance: the unique physiology of birds that fly at high altitudes." The Journal of Experimental Biology 214(15): 2455.
Seehausen, O., R. K. Butlin, et al. (2014). "Genomics and the origin of species." Nat Rev Genet 15(3): 176-192.
Shabalina, S. A., A. Y. Ogurtsov, et al. (2010). "Distinct Patterns of Expression and Evolution of Intronless and Intron-Containing Mammalian Genes." Molecular Biology and Evolution 27(8): 1745-1749.
Sheridan, J. A. and D. Bickford (2011). "Shrinking body size as an ecological response to climate change." Nature Climate Change 1(8): 401-406.
Singh, P., C. Borger, et al. (2017). "The Role of Alternative Splicing and Differential Gene Expression in Cichlid Adaptive Radiation." Genome Biol Evol 9(10): 2764-2781.
Sinha, R. P. and D.-P. Häder (2002). "UV-induced DNA damage and repair: a review." Photochemical & Photobiological Sciences 1(4): 225-236.
Soria-Carrasco, V., Z. Gompert, et al. (2014). "Stick Insect Genomes Reveal Natural Selection’s Role in Parallel Speciation." Science 344(6185): 738.
Storz, J. F., G. R. Scott, et al. (2010). "Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates." Journal of Experimental Biology 213(24): 4125-4136.
Tigano, A. and V. L. Friesen (2016). "Genomics of local adaptation with gene flow." Molecular Ecology 25(10): 2144-2164.
Vijay, N., C. M. Bossu, et al. (2016). "Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex." Nat Commun 7: 13195.
Wang, J., S. Vasaikar, et al. (2017). "WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit." Nucleic Acids Res 45(W1): W130-W137.
Weigand, H. and F. Leese (2018). "Detecting signatures of positive selection in non-model species using genomic data." Zoological Journal of the Linnean Society.
Wellenreuther, M. and L. Bernatchez (2018). "Eco-Evolutionary Genomics of Chromosomal Inversions." Trends Ecol Evol 33(6): 427-440.
Wilson Sayres, M. A. (2018). "Genetic Diversity on the Sex Chromosomes." Genome Biol Evol 10(4): 1064-1078.
Yang, S.-F., C.-W. Lu, et al. (2019). "To Trim or Not to Trim: Effects of Read Trimming on the De Novo Genome Assembly of a Widespread East Asian Passerine, the Rufous-Capped Babbler (Cyanoderma ruficeps Blyth)." Genes 10(10).
Zhang, G., C. Li, et al. (2014). "Comparative genomics reveals insights into avian genome evolution and adaptation." Science 346(6215): 1311-1320.
Zhang, Q., W. Gou, et al. (2016). "Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments." Genome Biology and Evolution 8(3): 765-776.
Zhu, X., Y. Guan, et al. (2018). "Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau." Proc Natl Acad Sci U S A 115(8): 1865-1870.