Author: |
陳俊鴻 Jyun-Hong Chen |
---|---|
Thesis Title: |
氧化鋁奈米流體應用於綠能動力系統散熱性能之研究 Research on Heat Dissipation System of Al2O3/Water Nanofluid for Green Power Sources |
Advisor: |
洪翊軒
Hung, Yi-Hsuan |
Degree: |
碩士 Master |
Department: |
工業教育學系 Department of Industrial Education |
Thesis Publication Year: | 2012 |
Academic Year: | 100 |
Language: | 中文 |
Number of pages: | 79 |
Keywords (in Chinese): | 奈米流體 、熱傳導係數 、散熱系統 、熱交換器 、綠能動力 |
Keywords (in English): | nanofluid, heat transfer coefficient, heat dissipation system, heat exchanger, green power source |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 91 Downloads: 18 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
熱管理系統攸關於綠能動力的輸出效率,其中散熱所使用的工作流體的熱性能將直接影響熱管理系統的性能。本研究使用Al2O3/Water奈米流體作為綠能動力散熱系統之工作流體,並實際與水相比較來評估其差異與可行性。首先,本研究使用二階合成法製備出Al2O3/Water奈米流體,並針對不同的溫度與濃度之下的熱傳導係數、流體密度、黏滯係數及比熱等基礎性質進行量測與分析。再者將Al2O3/Water奈米流體實際應用散熱系統之中,針對不同流速、溫度、濃度及加熱功率進行散熱性能與水泵耗電量的測試與評估。研究結果顯示,Al2O3/Water奈米流體在濃度1.5wt.%、2.1 L/min.及30℃的測試條件之下,熱交換量比水高39%;然而在1.5wt.%、流量2.1 L/min.及60℃的測試條件之下,水泵則呈現最高的耗電量。為了尋求最佳的系統配置參數,本研究同時考量散熱能力與水泵消耗功率而提出效率因子比(REF)來評估散熱系統的整體效能。經過分析評估發現,在低濃度與低流率的條件之下,Al2O3/Water奈米流體有較佳的整體效能,其效率因子比最高可達1.31。相關研究結果顯示使用Al2O3/Water奈米流體在綠能動力的熱管理系統之中具有縮減散熱器與水泵體積的潛力,對於電動車輛的配置空間、載重與續航力將能有所貢獻。
A thermal management system is strongly related to the output efficiency. The employed working fluid will directly influence the performance of the entire thermal management system. This research adopts Al2O3/Water nanofluid as the working fluid. The difference and feasibility compared with water was conducted. First, this research used a two step synthesis method to produce Al2O3/water nanofluid. The thermal conductivity coefficient, fluid density, viscosity coefficient and specific heat under different temperatures and concentrations were measured and analyzed. Moreover, the Al2O3/Water nanofluid was employed in a heat dissipation system to test and evaluate the heat dissipation performance and pumping power under different flow rates, temperatures, concentrations and heating power. The research results show that the heat exchange capacity is 39% higher than water under concentration of 1.5wt%, flow rate of 2.1 L/min. and temperature at 30℃. Moreover, the pumping power is highest at concentration of 1.5wt.%, flow rate of 2.1 L/min. and temperature at 60℃. To search for the optimal parameters, this research consider proposed an efficiency factor ratio to accommodate the heat dissipation capacity and the pumping power. After data analysis, at low concentration and low coolant flow rate, the efficiency factor ratio for the system is better. The highest ratio is to 1.31. The related research results indicate that the Al2O3/Water nanofluid utilized in the thermal management system of green energy sources has the potential to scale down the occupied space of the heat exchanger and the coolant pump. That is expected to bring a lot of benefit for the equipped space in and cruising mileage of an electric vehicle in the near future.
[1] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,奈米科技導論,台北:全華,(2008) 1-13。
[2] S. U. S. Choi, D. A. Siginer, H. P. Wang, Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows, ASME, 231/MD- Vol. 66, (1995) 99-105。
[3] J. Baker, New technology and possible advances in energy storage, Energy
Policy 36, (2008) 4368-4373。
[4] M. S. Wu, K. H. Liu, Y. Y. Wang, C. C. Wan, Heat dissipation design for
lithium-ion batteries, Journal of Power Sources, 109 (2002) 160-166。
[5] A. A. Pesaran, Battery thermal mangaement in EVs and HEVs: issues and solutions, Advanced Automotive Battery Conference, Las Vegas, Nevada, USA, February 6-8, (2001)。
[6] W.F Stoecker, J.W. Jones, Refrigeration and air conditioning, 2 ed.,
McGraw-Hill, (1982)。
[7] X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46 (2007) 1-19。
[8] S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer, 52 (2009) 3187-3196。
[9] C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Research Letters, 6 (2011) 229.
[10] 陳廷昱,三氧化二鋁奈米流體應用於電子散熱之效益研究,國立臺北科技大學能源與冷凍空調工程系碩士論文,(2010)。
[11] J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluid, Nanophase and Nanocomposite Materials II, MRS, Pittsburg, PA, (1997) 3-11。
[12] X. Wang, X. Xu, S. U. S. Choi., Thermal conductivity of nanoparticle–fluid mixture, Journal of Thermophysics and Heat Transfer, Vol.13, (1999) 474–480.
[13] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow, Vol. 21, (2000) 58-64。
[14] H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George, and T. Pradeep, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects, Applied Physics Letters, 83(14), (2003) 2931-2933。
[15] D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Model for heat conduction in nanofluids, Physical Review Letters, 93(14), (2004) 144301。
[16] C. H. Li and G. P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), Journal of Applied Physics, 99(8), 2006, 084314。
[17] S.J. Palm, G. Roy, C.T. Nguyen, Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties, Applied Thermal Engineering, 26 (2006) 2209-2218.
[18] D. H. Yoo, K. S. Hong and H. S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochimica Acta, 455(1-2), (2007) 66-69。
[19] C. H. Li and G. P. Peterson, The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids, Journal of Applied Physics, 101, (2007) 044312。
[20] K. B. Anoop, T. Sundararajan, S. K. Das, Effect of particle size on the convective heat transfer to in nanofluid in the developing region, International Journal of Heat and Mass Transfer, 52(9-10), (2009) 2189-2195。
[21] Y. Y. Li, L. C. Lv and Z. H. Liu, Influence of nanofluids on the operation characteristics of small capillary pumped loop, Energy Conversion and Management, 51(11), (2010) 2312-2320。
[22] L. F. Chen and H. Q. Xie, Properties of carbon nanotube nanofluids stabilized by cationic Gemini surfacetant, Thermochimica Acta, 506(1-2), (2010) 62-66。
[23] F. M. Su, X. E. Ma and Z. Lan, The effect of carbon nanotubes on the physical properties of a binary nanofluid, Journal of the Taiwan Institute of Chemical Engineers, 42(2), (2011) 252-257。
[24] C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system, Applied Thermal Engineering, 27 (2007) 1501–1506。
[25] R.Y. Chein and J. Chuang, Experimental microchannel heat sink performance
studies using nanofluids, International Journal of Thermal Sciences 46 (2007) 57-66。
[26] D.P. Kulkarni, R.S. Vajjha, D.K. Das, D. Oliva, Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant, Applied Thermal Engineering, 28 (2008) 1774-1781。
[27] J. Li, C. Kleinstreuer, Thermal performance of nanofluid flow in microchannels, International Journal of Heat Fluid Flow 29 (2008) 1221-1232。
[28] M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, International Journal of Heat Fluid Flow 30 (2009) 691–699。
[29] K.Y. Leong, R. Saidur, S.N. Kazi, A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering, 30 (2010) 2685-2692。
[30] C.J. Ho, L.C. Wei, Z.W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid, Applied Thermal Engineering, 30 (2010) 96-103。
[31] C.S. Jwo, L.Y. Jeng, T.P. Teng, C.C. Chen, Performance of overall heat transfer in multi-channel heat exchanger by alumina nanofluid, Journal of Alloys and Compounds, 504S (2010) 385–388。
[32] A. Zamzamian, S.N. Oskouie, A. Doosthoseini, A. Joneidi, M. Pazouki, Experimental, investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow, Experimental Thermal and Fluid Science, 35 (2011) 495-502。
[33] 王世敏、許祖勛、傅晶 編著,奈米材料原理與製備,台北:五南,(2004)。
[34] 邱源成 譯,奈米科技全書II-觀察分析法,台北:全華,(2005)。
[35] 馬振基 主編,奈米材料科技原理與應用,台北:全華,(2003)。
[36] 鄭信民、林麗娟,X光熱射應用簡介,工業材料雜誌,180,(2002),100-108。
[37] 高濂、孫靜、劉楊橋,奈米粉體的分散與改性,台北:五南,(2005)。
[38] 顏志羽,以水系電泳沉積法製備奈米碳膜,大同大學材料工程學系碩士論文,2009。
[39] J. C. Maxwell, A Treatise on Electricity and Magnetism, second ed., Clarendon Press, Oxford, UK, 1881。
[40] R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous twocomponent systems, Industrial & Engineering Chemistry Fundamentals, 1, (1962) 82-191。
[41] F. J. Wasp, Solid+Liquid Flow Slurry Pipeline Transportation, Trans. Pub., Berlin, (1977)。
[42] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thomson , Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, Vol. 78, (2001) 718–720。
[43] W. Yu and S. U. S. Choi, The role of interfacial layers in the enhance thermal conductivity of nanofluids: a renovated Maxwell model, Journal of Nanoparticle Research, 5 (2003) 167-171。
[44] C. J. Ho, W. K. Liu, Y. S. Chang and C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, International Journal of Thermal Sciences, 49(8), (2010) 1345-1353。
[45] B. Pak and Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, vol.11, no. 2, (1998) 151-170。
[46] A. Einstein, Investigation on the Theory of Brownian Motion, Dover, New York, (1956)。
[47] H. C. Brinkman, The viscosity of concentrated suspensions and solutions, Journal of Chemical Physics 20, (1952) 571-581。
[48] G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics, 83 (1977) 97–117。
[49] I.M. Krieger and T. J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres, Transaction of the Society of Rheology, 3 (1959) 137–152。
[50] T. Kitano, T. Kataoka, T. Shirota, An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheologica Acta, 20 (1981) 207–209。
[51] Z.H. Liu, Q.Z. Zhu, Application of aqueous nanofluids in a horizontal mesh heat pipe, Energy Conversion and Management, 52 (2011) 292–300。
[52] R. W. Fox and A. T. Mcdonald, Introduction to fluid mechanics, 5thed. New York : John Wiley&Sons, (1998)。
[53] R. L. Mott, Applied fluid mechanics, Macmillan, Inc., (1994)。
[54] P. K. Swamee and A. K. Jain, Explicit equation for pipe-flow problem, Journal of the hydraulics division, 102(HY5), (1976) 657-664。
[55] 黃鎮江 編著,燃料電池,台北:全華,(2003)。
[56] NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook。
[57] JCPDS-ICDD,The International Centre for Diffraction Data,PCPPDFWIN 2.4,2003。