Basic Search / Detailed Display

Author: 陳昀宗
Chen, Yun-Tsung
Thesis Title: 八週跑步訓練結合血流限制對男運動員心肺與肌肉適能之影響
Effects of Eight Weeks of Running Training Combined with Blood Flow Restriction on Cardiopulmonary and Muscular Fitness of Male Athletes
Advisor: 林正常
Lin, Jung-Charng
徐孟達
Hsu, Mong-Da
Degree: 博士
Doctor
Department: 體育學系
Department of Physical Education
Thesis Publication Year: 2016
Academic Year: 104
Language: 中文
Number of pages: 70
Keywords (in Chinese): 肌力肌耐力最大攝氧量KAATSU訓練
Keywords (in English): strength, endurance, maximal oxygen uptake, KAATSU training
DOI URL: https://doi.org/10.6345/NTNU202204385
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 179Downloads: 51
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 目的:本研究目的在探討8週、每週3天的跑步訓練結合血流限制對運動員心肺與肌肉適能的影響。方法:招募20名男性運動員,依據最大攝氧量配對分組到:(1) 跑步訓練結合血流限制組 (RT-BFR, n=10)、(2) 跑步訓練組 (RT, n=10)。兩組皆以50%HRR的相對速度,進行3分鐘跑步訓練、5組、組間休息1分鐘,但RT-BFR額外進行大腿加壓,加壓程度為手臂收縮血壓x 1.3倍。所有受試者在8週訓練前、後與2週停止訓練後,評估最大攝氧量、運動力竭時間,膝屈肌與膝伸肌等速肌力與肌耐力表現。另外,第1週第1次與第8週最後1次訓練的訓練前、訓練後15分鐘與24小時,採血分析血液生化指標 (睪固酮與皮質醇)。統計方法,8週跑步訓練效果,採單因子共變數分析。保留效果,以2週停止訓練改變量 (Δ%),進行獨立樣本t檢定分析。血液生化指標以二因子共變數分析。結果:(1) 8週訓練效果;RT-BFR的最大攝氧量顯著高於RT (67.41 vs. 59.54 ml/kg/min, p < .05)。RT-BFR的運動力竭時間高於RT (16.4 vs. 15.0分鐘, p < .05)。RT-BFR的膝伸肌等速肌力 (60º/s, 2.61 vs. 2.39 Nm/kg; 180º/s, 1.88 vs. 1.67 Nm/kg) 與肌耐力表現,皆與RT達顯著差異 (p < .05)。但是兩組之間的膝屈肌等速肌力、肌耐力、膝屈肌與膝伸肌最大力矩比值 (H/Q ratio)、疲勞指標與血液生化指標,皆無顯著差異 (p > .05)。(2) 保留效果;RT-BFR與RT的2週停止訓練改變量,在最大攝氧量、運動力竭時間、膝伸肌與膝屈肌等速肌力、肌耐力、H/Q ratio與疲勞指標,皆無顯著差異 (p > .05)。但RT-BFR的H/Q ratio從0.75下降至0.69,減少訓練帶來的腿後肌保護效果。結論:8週跑步訓練結合血流限制提升最大攝氧量 (5.1%)、運動力竭時間 (6.6%)、膝伸肌等速肌力 (15.9~17.4%) 與肌耐力 (9.5%) 表現,並維持良好的下肢肌力平衡 (H/Q ratio, 0.60~0.75)。即使2週停止訓練,仍能保持較佳的心肺與肌肉適能狀態。建議未來可應用在長跑與鐵人三項等運動員訓練上,以增加其訓練多元性,並促進競技運動表現。

    Purpose: This study investigated the effects of 8 week (3 days/week) running training combined with blood flow restriction on cardiopulmonary and muscular fitness on athletes. Methods: Twenty male athletes were recruited and pair matched into (1) running with thigh blood flow restriction group (RT-BFR, n=10), or (2) running training only group (RT, n=10). All subjects in both groups performed five sets of 3-min running training at the relative speed of 50%HRR with a 1-min rest between sets. RE-BFR group performed running sessions with pressure cuff belts. The occlusion pressure was 1.3x resting systolic blood pressure. VO2max, all out time (AOT), isokinetic knee extensor, flexor strength and endurance were assessed before, after 8 weeks of training and after 2 weeks of detraining. Testosterone and cortisol were assessed at the first and last (24th) training session. One-way ANOCVA was used to evaluate the training effects. Independent-sample t test was used to evaluate the retain effects on the variation (Δ%) of detraining. Two-way ANOCVA was used to evaluate the testosterone and cortisol. Results: (1) training effects; RT-BFR elicited significantly greater increase in VO2max performance than RT (67.41 vs. 59.54 ml/kg/min, p < .05). AOT also significantly increased in RT-BFR than in RT (16.4 vs. 15.0 mins, p < .05). There were significant (p < .05) differences between RE-BFR and RE in isokinetic knee extensor strength (60º/s, 2.61 vs. 2.39 Nm/kg; 180º/s, 1.88 vs. 1.67 Nm/kg) and endurance, but not in knee flexor strength, endurance, hamstring/quadriceps (H/Q) ratio, fatigue index, testosterone and cortisol (p > .05). (2) retain effects; there were no differences (p > .05) between groups in VO2max, AOT, isokinetic knee extensor, flexor strength, endurance, H/Q ratio and fatigue index. However, the RT-BFR decreased in H/Q ratio from 0.75 to 0.69, which may alleviate the training induced injury protect effect in hamstring. Conclusion: The findings suggest that 8 weeks of RT-BFR elicits greater increase in VO2max (5.1%), AOT (6.6%), knee extensor strength (15.9~17.4%), endurance (9.5%) performance and strength balance (H/Q ratio, 0.60~0.75). Furthermore, the RT-BFR was still outstanding in cardiopulmonary and muscular fitness after 2 weeks of detraining, which may be considered as a practical training strategy for long-distance or triathlon athletes.

    目 次 口試委員與系主任簽字之論文通過簽名表…………….............……..…………………i 論文授權書……………………………………………………………………………...................…ii 中文摘要………………………………………………………………………………....................iii 英文摘要…………………………………………………………………………….....................…iv 謝誌……………………………………………………………………………………….....................…v 目次……………………………………………………………………………………….....................vi 表次…………………………………………………………………………………....................…viii 圖次………………………………………………………………………………….....................…..x 第壹章 緒論……………........................……………………………………………….1 第一節 問題背景……………………………………………………………….................……..1 第二節 研究目的…………………………………………………………………....................4 第三節 研究假設…………………………………………………………………....................4 第四節 名詞操作性定義…………………………………………………………….................5 第五節 研究限制………………………………………..………………………..................…7 第六節 研究重要性………………………………………………………………...................8 第貳章 文獻探討….…..…………………………………………….....................……9 第一節 運動結合血流限制對人體的生理反應之相關研究……..………………….....…9 第二節 運動訓練結合血流限制對心肺與肌肉適能之相關研究…………………..…..12 第三節 運動結合血流限制之安全性……………………………………………….............17 第四節 本章總結………….…………………….……………………………………................18 第參章 研究方法與步驟….…………………………………....................……..19 第一節 研究對象…………………………………………………………...................….…19 第二節 實驗設計………………………………………………………………....................19 第三節 實驗步驟……………………………………………………………..…..................20 第四節 實驗工具與測量方法…………………………………………….……................22 第五節 資料處理……….…….…………………………………………………..................27 第肆章 結果…….…….......................……………………………………………..28 第一節 受試者基本資料……………………………………………….............……..…..…28 第二節 8週跑步訓練結合血流限制對最大攝氧量的影響………..……………......30 第三節 8週跑步訓練結合血流限制對運動力竭時間的影響………..……..…....31 第四節 8週跑步訓練結合血流限制對肌力的影響…………………….……..........32 第五節 8週跑步訓練結合血流限制對肌耐力的影響………………………...........37 第六節 8週跑步訓練結合血流限制對血液生化指標的影響……………….........40 第七節 8週跑步訓練結合血流限制對身體組成的影響……………………..........46 第八節 8週跑步訓練結合血流限制對大腿圍的影響……………………............48 第伍章 討論…….………………………………………………….........................49 第一節 8週跑步訓練結合血流限制對心肺與肌肉適能的訓練效果……..…...…49 第二節 2週停止訓練對心肺與肌肉適能的保留效果……….…………………........54 第三節 結論與建議……………………………………………….……………..................58 參考文獻……………………………………………………………........................……….59 附錄一 受試者須知………………………………………………..………………................66 附錄二 受試者同意書.……………………………………………..……………...............…68 附錄三 受試者健康情況調查表.…………………………………..……………............69 表 次 表2-1 有氧訓練結合血流限制提升心肺與肌肉適能相關研究………........15 表2-2 阻力訓練結合血流限制提升肌肉適能相關研究……..……..….......16 表3-1 訓練期間與訓練後依變項檢測時間表.……….……………...…........22 表3-2 Bruce protocol………….…………………………...……………............23 表4-1-1 受試者基本資料……….……….…………………...……………..............28 表4-1-2 8週跑步訓練的強度指標..………………………...……………............29 表4-1-3 大腿加壓程度的施測者內信度.....………………...……………........29 表4-2-1 不同組別對最大攝氧量的影響…………………...……………............30 表4-2-2 不同組別對最大攝氧量保留效果的影響….…..……….……….........30 表4-3-1 不同組別對運動力竭時間的影響…..…………...……………...........31 表4-3-2 不同組別對運動力竭時間保留效果的影響…...………..……........31 表4-4-1 不同組別對膝伸肌等速 (60º/s) 肌力的影響….……………........32 表4-4-2 不同組別對膝伸肌等速 (60º/s) 肌力保留效果的影響……......32 表4-5-1 不同組別對膝屈肌等速 (60º/s) 肌力的影響...………...…..…..33 表4-5-2 不同組別對膝屈肌等速 (60º/s) 肌力保留效果的影響...……...33 表4-6-1 不同組別對膝伸肌等速 (180º/s) 肌力的影響.………..….….....34 表4-6-2 不同組別對膝伸肌等速 (180º/s) 肌力保留效果的影響......…34 表4-7-1 不同組別對膝屈肌等速 (180º/s) 肌力的影響.……………….......35 表4-7-2 不同組別對膝屈肌等速 (180º/s) 肌力保留效果的影響..……...35 表4-8-1 不同組別對膝屈肌/膝伸肌等速肌力比值的影響.……………........…36 表4-8-2 不同組別對膝屈肌/膝伸肌等速肌力比值保留效果的影響…......…36 表4-9-1 不同組別對膝伸肌等速 (180º/s) 肌耐力的影響.………....…..…37 表4-9-2 不同組別對膝伸肌等速 (180º/s) 肌耐力保留效果的影響……....37 表4-10-1 不同組別對膝屈肌等速 (180º/s) 肌耐力的影響...........38 表4-10-2 不同組別對膝屈肌等速 (180º/s) 肌耐力保留效果的影響…..….38 表4-11-1 不同組別對疲勞指標的影響...…………….……………………...........39 表4-11-2 不同組別對疲勞指標保留效果的影響...…….…………………........39 表4-12-1 不同組別對體重的影響...……………………………….………............46 表4-12-2 不同組別對體重保留效果的影響……………...……….………..........46 表4-13-1 不同組別對體脂肪百分比的影響...…………………….………..........47 表4-13-2 不同組別對體脂肪百分比保留效果的影響...………….……….......47 表4-14-1 不同組別對大腿圍的影響………………………………………...............48 表4-14-2 不同組別對大腿圍保留效果的影響……………………………............48 圖 次 圖 1-1 血流限制實驗示意圖…..….….…….....………………………….….......…..5 圖 1-2 大腿圍示意圖………….……………………………………...............…..……..7圖 3-1 實驗流程圖………………..……………………………………..….................21 圖 3-2 Vmax能量代謝系統…………………………………………..............……....23圖 3-3 Biodex等速肌力測量儀……….....…………………………………...........24 圖 3-4 InBody身體組成分析儀………………...........……………………………....25 圖 3-5 Polar心跳錶………….…………………………………………..................…25 圖 3-6 血壓計與血壓帶……….……...……………………..……………….............26 圖 4-1-1 單次跑步訓練對睪固酮的影響…..…………..………….…….........…40 圖 4-1-2 單次跑步訓練對皮質醇的影響…..……………………………...........…41 圖 4-1-3 單次跑步訓練對T/C ratio的影響……………..…………….........…42 圖 4-2-1 8週跑步訓練對睪固酮的影響…..…………..………….……..........…43 圖 4-2-2 8週跑步訓練對皮質醇的影響…..……………………………............…44 圖 4-2-3 8週跑步訓練對T/C ratio的影響……………..…………..........……45

    林正常 (2011)。運動生理學 (增訂四版)。臺北市:師大書苑。
    遲舒云、林亞蓉、王淑芬 (2008)。以超音波影像引導觸診定位腰椎各節棘突位置。物理治療,33(3),168-174。
    Abe, T., Fujita, S., Nakajima, T., Sakamaki, M., Ozaki, H., Ogasawara, R., . . . Ishii, N. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. Journal of Sports Science and Medicine, 9(3), 452-458.
    Abe, T., Kearns, C. F., & Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of Applied Physiology, 100(5), 1460-1466. doi: 10.1152/japplphysiol.01267.2005
    Abe, T., Kearns, C., Fujita, S., Sakamaki, M., Sato, Y., & Brechue, W. (2009). Skeletal muscle size and strength are increased following walk training with restricted leg muscle blood flow: Implications for training duration and frequency. International Journal of KAATSU Training Research, 5(1), 9-15. doi: http://dx.doi.org/10.3806/ijktr.5.9
    Abe, T., Yasuda, T., Midorikawa, T., Sato, Y., Kearns, C., Inoue, K., . . . Ishii, N. (2005). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily" KAATSU" resistance training. International Journal of KAATSU Training Research, 1(1), 6-12. doi: http://dx.doi.org/10.3806/ijktr.1.6
    Abete, P., Cacciatore, F., Testa, G., Della-Morte, D., Galizia, G., de Santis, D., ... Rengo, F.(2010). Ischemic preconditioning in the aging heart: From bench to bedside. Ageing Research Reviews, 9(2), 153-162. doi: 10.1016/j.arr.2009.07.001
    American College of Sports Medicine. (2009). ACSM’s resource manual for guidelines for exercise testing and prescription. Philadelphia: Williams & Wilkins.
    Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381.
    Chi, M. M., Hintz, C. S., Coyle, E. F., Martin, W. H., 3rd, Ivy, J. L., Nemeth, P. M., . . . Lowry, O. H. (1983). Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. American Journal of Physiology, 244(3), C276-287.
    Clark, B. C., Manini, T. M., Hoffman, R. L., Williams, P. S., Guiler, M. K., Knutson, M. J., ... Kushnick, M. R. (2011). Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scandinavian Journal of Medicine and Science in Sports, 21(5), 653-662. doi: 10.1111/ j.1600-0838.2010.01100.x
    Clark, M. A., & Lucett, S. C. (2010). NASM essentials of sports performance training. Philadelphia: Williams & Wilkins.
    Coyle, E. F., Martin, W. H., 3rd, Sinacore, D. R., Joyner, M. J., Hagberg, J. M., & Holloszy, J.O. (1984). Time course of loss of adaptations after stopping prolonged intense endurance training. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 57(6), 1857-1864.
    Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., & Caria, M. A.(2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. Journal of Applied Physiology, 111(2), 530-536. doi: 10.1152/japplphysiol.00266.2011
    De groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010).Ischemic preconditioning improves maximal performance in humans. European Journal
    of Applied Physiology, 108(1), 141-146. doi: 10.1007/s00421-009-1195-2
    Fujita, S., Abe, T., Drummond, M. J., Cadenas, J. G., Dreyer, H. C., Sato, Y., . . . Rasmussen, B. B. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology, 103(3), 903-910. doi: 10.1152/japplphysiol.00195.2007
    Giada, F., Bertaglia, E., De Piccoli, B., Franceschi, M., Sartori, F., Raviele, A., & Pascotto, P.
    (1998). Cardiovascular adaptations to endurance training and detraining in young and older athletes. International Journal of Cardiology, 65(2), 149-155.
    Gibson, N., White, J., Neish, M., & Murray, A. (2013). Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. International Journal of Sports Physiology and Performance, 8(6), 671-676.
    Hansen, A. L., Johnsen, B. H., Sollers, J. J., 3rd, Stenvik, K., & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: the effects of training and detraining. European Journal of Applied Physiology, 93(3), 263-272. doi:
    10.1007/s00421-004-1208-0
    Hollander, D. B., Reeves, G. V., Clavier, J. D., Francois, M. R., Thomas, C., & Kraemer,R. R. (2010). Partial occlusion during resistance exercise alters effort sense and
    pain. Journal of Strength and Conditioning Research, 24(1), 235-243. doi: 10.1519/JSC.0b013e3181c7badf
    James, E. G., & Karabulut, M. (2013). Vascular restriction decreases EMG regularity during walking. Human Movement Science, 32(3), 389-399. doi: 10.1016/j.humov .2013.01.007
    Kacin, A., & Strazar, K. (2011). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scandinavian Journal of Medicine and Science in Sports, 21(6), e231-241. doi: 10.1111/j.1600-0838.2010 .01260.x
    Kaminsky, L. A., Padjen, S., & LaHam-Saeger, J. (1990). Effect of split exercise sessions on excess post-exercise oxygen consumption. British Journal of Sports Medicine, 24(2), 95-98.
    Karabulut, M., Abe, T., Sato, Y., & Bemben, M. G. (2010). The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men.
    European Journal of Applied Physiology, 108(1), 147-155. doi: 10.1007/s00421-009-1204-5
    Khademi, A., Zareie, K., Jahromi, S. R., & Mirsadzadeh, M. (2015). The effect of 8 weeks detraining on static and dynamic muscle endurance. International Journal of Basic
    Sciences and Applied Research, 4(4), 235-239.
    Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35(4), 339-361.
    Lanzi, R., Losa, M., Mignogna, G., Caumo, A., & Pontiroli, A. E. (1999). The control on growth hormone release by free fatty acids is maintained in acromegaly. The Journal of
    Clinical Endocrinology and Metabolism, 84(4), 1234-1238. doi: ttp://dx.doi.org/10. 1210/jcem.84.4.5618
    Loenneke, J. P., Thrower, A. D., Balapur, A., Barnes, J. T., & Pujol, T. J. (2012). Blood flow–restricted walking does not result in an accumulation of metabolites. Clinical
    Physiology and Functional Imaging, 32(1), 80-82. doi: 10.1111/j.1475-097X. 2011.01059.x
    Madarame, H., Neya, M., Ochi, E., Nakazato, K., Sato, Y., & Ishii, N. (2008). Cross-transfer effects of resistance training with blood flow restriction. Medicine and Science in Sports and Exercise, 40(2), 258-263. doi: 10.1249/mss.0b013e31815c6d7e
    McCaulley, G. O., McBride, J. M., Cormie, P., Hudson, M. B., Nuzzo, J. L., Quindry, J. C., & Travis Triplett, N. (2009). Acute hormonal and neuromuscular responses to hypertrophy,strength and power type resistance exercise. European Journal of Applied Physiology, 105(5), 695-704. doi: 10.1007/s00421-008-0951-z
    McDonagh, M. J., & Davies, C. T. (1984). Adaptive response of mammalian skeletal muscle to exercise with high loads. European Journal of Applied Physiology and Occupational
    Physiology, 52(2), 139-155.
    Moore, D. R., Burgomaster, K. A., Schofield, L. M., Gibala, M. J., Sale, D. G., & Phillips, S.M. (2004). Neuromuscular adaptations in human muscle following low intensity
    resistance training with vascular occlusion. European Journal of Applied Physiology,92(4-5), 399-406. doi: 10.1007/s00421-004-1072-y
    Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136.
    Nakajima, T., Kurano, M., Iida, H., Takano, H., Oonuma, H., Morita, T., . . . Nagata, T.(2006). Use and safety of KAATSU training: Results of a national survey. International
    Journal of KAATSU Training Research, 2(1), 5-13. doi: http://dx.doi.org/10.3806/ijktr.2.5
    Orchard, J., Marsden, J., Lord, S., & Garlick, D. (1997). Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. American
    Journal of Sports Medicine, 25(1), 81-85. doi: 10.1177/036354659702500116
    Ozaki, H., Miyachi, M., Nakajima, T., & Abe, T. (2011). Effects of 10 weeks walk training with leg blood flow reduction on carotid arterial compliance and muscle size in the elderly adults. Angiology, 62(1), 81-86. doi: 10.1177/0003319710375942
    Ozaki, H., Sakamaki, M., Yasuda, T., Fujita, S., Ogasawara, R., Sugaya, M., . . . Abe, T.(2011). Increases in thigh muscle volume and strength by walk training with leg blood
    flow reduction in older participants. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 66(3), 257-263. doi: 10.1093/gerona/glq182
    Park, S., Kim, J. K., Choi, H. M., Kim, H. G., Beekley, M. D., & Nho, H. (2010). Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in
    athletes. European Journal of Applied Physiology, 109(4), 591-600. doi: 10.1007/s00421-010-1377-y
    Reeves, G. V., Kraemer, R. R., Hollander, D. B., Clavier, J., Thomas, C., Francois, M., & Castracane, V. D. (2006). Comparison of hormone responses following light
    resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of Applied Physiology, 101(6),1616-1622. doi: 10.1152/japplphysiol.00440.2006
    Salvador, A. F., Schubert, K. R., Cruz, R. S. d. O., Corvino, R. B., Pereira, K. L., Caputo, F., & de Oliveira, M. F. M. (2016). Bilateral muscle strength symmetry and performance are improved following walk training with restricted blood flow in an elite paralympic sprint runner: Case study. Physical Therapy in Sport, 20, 1-6. doi: 10.1016/j.ptsp.2015.10.004
    Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiuchi, M., ... Tsutsui, H.(2010). Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Journal of Applied Physiology, 108(6), 1563-1567. doi: 10.1152/japplphysiol.00504.2009
    Takano, H., Morita, T., Iida, H., Asada, K., Kato, M., Uno, K., . . . Nakajima, T. (2005).Hemodynamic and hormonal responses to a short-term low-intensity resistance
    exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65-73. doi: 10.1007/s00421-005-1389-1
    Takarada, Y., Nakamura, Y., Aruga, S., Onda, T., Miyazaki, S., & Ishii, N. (2000). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of Applied Physiology, 88(1), 61-65.
    Takarada, Y., Sato, Y., & Ishii, N. (2002). Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. European Journal of Applied Physiology, 86(4), 308-314.
    Takarada, Y., Takazawa, H., & Ishii, N. (2000). Applications of vascular occlusion diminish
    disuse atrophy of knee extensor muscles. Medicine and Science in Sports and Exercise,32(12), 2035-2039.
    Takarada, Y., Tsuruta, T., & Ishii, N. (2004). Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Japanese Journal of Physiology, 54(6), 585-592.
    Yasuda, T., Brechue, W. F., Fujita, T., Sato, Y., & Abe, T. (2008). Muscle activation during low-intensity muscle contractions with varying levels of external limb compression. Journal of Sports Science and Medicine, 7(4), 467-474.
    Yasuda, T., Ogasawara, R., Sakamaki, M., Ozaki, H., Sato, Y., & Abe, T. (2011). Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. European Journal of Applied Physiology, 111(10), 2525-2533. doi: 10.1007/s00421-011-1873-8
    Yeung, S. S., Suen, A. M., & Yeung, E. W. (2009). A prospective cohort study of hamstring injuries in competitive sprinters: Preseason muscle imbalance as a possible risk factor. British Journal of Sports Medicine, 43(8), 589-594. doi: 10.1136/bjsm.2008.056283

    下載圖示
    QR CODE