Basic Search / Detailed Display

Author: 周家麒
Chou, Chia-Chi
Thesis Title: 攜帶式氣相層析儀在化學工業與周界環境之揮發性有機氣體檢測應用
The Applications of Portable Gas Chromatographs on Real Time VOC Analysis for Chemical Industries and Surrounding Environment
Advisor: 呂家榮
Lu, Chia-Jung
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2018
Academic Year: 106
Language: 中文
Number of pages: 86
Keywords (in Chinese): 微型氣相層析儀揮發性有機化合物即時分析環境分析空氣品質
Keywords (in English): micro gas chromatograph, volatile organic compound, real-time analysis, environmental analysis, air quality
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.019.2018.B05
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 153Downloads: 4
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 近年來工業快速發展,環境污染事件層出不窮進而增加國人在健康上的隱憂,揮發性有機化合物(Volatile Organic Compounds,VOCs)是在大多數城市環境中普遍存在的主要污染物之一,同時也是光化學反應中的二次污染物之前驅物,因此,如何確認與控管揮發性有機化合物之排放來源,並降低其危害影響是當前重要課題。
      本研究致力於將可攜式氣相層析儀 µGC-FID 及 µGC-PID,分別應用在偵測南部工業區及周界環境,µGC-FID 用於偵測台南市政府環境保護局所建議常用的十六種揮發性有機化合物,這些出現在半導體科技與化學產業製程中以及汽機車尾氣排放之污染物當中,除了甲烷、乙苯沒有列入現行法規之內,丙烯醛的偵測下限則是高於容許濃度 0.1 ppm,其餘十三種已達法規所需偵測濃度,而十六種化合物偵測極限範圍介於 0.05 至 0.77 ppm 之間。
      而 µGC-PID 則是結合前濃縮裝置,已成功在高雄楠梓加工出口區周界環境進行實地測量,目前已定性出九種揮發性有機化合物,採樣結果濃度皆介在個位數到百位數ppb範圍之內,並且結合氣象資訊及相關性分析,可初步評估污染物來源主要來自於工業區排放,次要則是來自於汽機車尾氣排放,結果顯示,甲基丙烯酸甲酯、乙苯、鄰二甲苯、丁酮、乙酸丁酯、乙酸乙酯、苯、甲苯及對/間二甲苯等濃度分別在3.9、2.2、7.1、7.6、49.7 ppb之內、4.2 ~ 146.3 ppb、3.3 ~ 5.2 ppb、3.1 ~ 42.1 ppb 及 4.2 ~ 7.9 ppb 之間,然而,這些偵測濃度遠低於現行標準規範,在未來可進行更長時間即時分析,快速累積大量環境分析數據,並且結合統計分析更深入了解污染來源,找出相對應的產業可作為管理空污的參考,使得能夠達到維護大氣環境之外,更能保障工業區內作業人員以及周圍居民的健康。

    In recent years, environmental pollution increases the health problem with the rapid development of industry. Volatile organic compounds (VOCs) are one of main organic chemicals that are pervasive in the most urban environment. VOCs are also precursors of the secondary pollutants in the photochemical reaction. To identify and control the emission sources of volatile organic compounds and reduce harmful effects is important issue for us.
    In this study, we devote the portable μGC-FID and μGC-PID to detect industrial areas and the surrounding environment in the sounthern Taiwan. We would like to detect 16 different VOCs, which are on the pollution list of Environmental Protection Bureau of Tainan City Government by μGC-FID. These compounds appear in semiconductor manufacturing industries and exhaust gases of vehicles. In addition to methane and ethylbenzene, other compounds are in compliance with current laws and regulations. Furthermore, acrolein exceeds maximum allowable concentration of 0.1 ppm and the other 13 compounds achieve the regulatory requirements. The detection limit of 16 compounds range from 0.05 to 0.77 ppm.
    The μGC-PID equipped with a pre-concentration device have been successfully field-measured the surrounding environment of Nanzih Export Processing Zone in Kaohsiung. There are 9 different VOCs qualitative analyzed. The result ranging from units digit to hundreds ppb can assess that the pollutants of industrial areas and exhaust gases of vehicles by using meteorological information and correlation analysis. However, these detection concentrations are much lower than current laws and regulations. We wish that we can analyze in real time for longer periods in the future. In summary, two μGC can be used to reveal plenty of data for environmental analysis which can apply them with statistical analysis to know the source of pollution. These results can be used as a reference for air pollution management by the corresponding industries in order to maintain the atmospheric environment and protect the health of people around the industrial area.

    中文摘要 I 英文摘要 III 目錄 V 圖目錄 VIII 表目錄 X 一、緒論 1 1-1 研究背景 1 1-2 揮發性有機化合物的介紹 3 1-2-1 揮發性有機化合物定義 3 1-2-2 揮發性有機化合物排放來源 5 1-2-3 揮發性有機化合物危害 7 1-3 揮發性有機化合物容許濃度標準規範 9 1-4 揮發性有機化合物採樣和分析方法 14 1-5 偵測方法 17 1-5-1 可攜型氣相層析儀 19 二、研究方法 27 2-1 實驗架構 27 2-2 實驗藥品 28 2-3 儀器與設備 30 2-4 實驗步驟 31 2-4-1 配製氣體採樣袋 31 2-4-2 配製校正液體濃度 31 2-4-3 桌上型氣相層析儀之分析條件 32 2-4-4 可攜型氣相層析儀(μGC-FID)之分析條件 33 2-4-5 可攜型氣相層析儀(μGC-PID)之分析條件 33 2-5 實驗操作方法 34 2-6 採樣背景與地點 38 2-6-1 工業環境背景(μGC-FID) 38 2-6-2 周界環境分析(μGC-PID) 39 三、實驗結果與討論 43 3-1 分析揮發性有機化合物之分離條件 43 3-1-1 桌上型氣相層析儀(GC-FID) 43 3-1-2 可攜型氣相層析儀(μGC-FID) 47 3-2 可攜型氣相層析儀(μGC-FID)之校正 49 3-3 揮發性有機化合物之校正 53 3-4 可攜型氣相層析儀(μGC-PID)之分離條件 58 3-5 可攜型氣相層析儀(μGC-PID)之校正 59 3-6 周界環境之即時分析結果(μGC-PID) 62 四、結論 75 五、參考文獻 77

    [1] Han, D.; Gao, S.; Fu, Q.; Cheng, J.; Chen, X.; Xu, H.; Liang, S.; Zhou, Y.; Ma, Y., Atmospheric Research, 2018, 209, 123-130.
    [2] Kulmala, M.; Vehkamäki, H.; Petäjä, T.; Dal Maso, M.; Lauri, A.; Kerminen, V. M.; Birmili, W.; McMurry, P. H., Journal of Aerosol Science, 2004, 35 (2), 143-176.
    [3] World Health Organization, Air quality deteriorating in many of the world's cities. News release. http://www.who.int/mediacentre/news/releases/2014/air-quality/en/.
    [4] Delfino, R. J.; Gong Jr, H.; Linn, W. S.; Pellizzari, E. D.; Hu, Y., Environmental Health Perspectives, 2003, 111 (4), 647-656.
    [5] U.S. EPA, Method TO-15 Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-prepared Canisters and Analyzed by Gas Chromatography/mass Spectrometry (GC/MS),. 2004.
    [6] U.S. EPA, Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes. 1999.
    [7] Jian, R.-S.; Huang, Y.-S.; Lai, S.-L.; Sung, L.-Y.; Lu, C.-J., Microchemical Journal, 2013, 108, 161-167.
    [8] Jian, R.-S.; Sung, L.-Y.; Lu, C.-J., Chemosphere, 2014, 99, 261-266.
    [9] Jian, R.-S.; Wang, T.-Y.; Song, L.-Y.; Kuo, C.-Y.; Tian, W.-C.; Lo, E.-W.; Lu, C.-J., Building and Environment, 2015, 94, 287-295.
    [10] U.S. EPA, VOC330701781 ,Definition of "Volatile Organic Compound". 1978.
    [11] 行政院環境保護署, 空氣污染防制法「揮發性有機物空氣污染管制及排放標準」. 2012.
    [12] Benitez, J., Process Engineering and Design for Air Pollution Control. PTR Prentice-Hall Inc.: New Jersey, 1993, pp.466.
    [13] Atkinson, R.; Arey, J., Chemical Reviews, 2003, 103 (12), 4605-4638.
    [14] Schauer, J. J.; Fraser, M. P.; Cass, G. R.; Simoneit, B. R. T., Environmental Science and Technology, 2002, 36 (17), 3806-3814.
    [15] 國家教育研究院, 光化學反應, 雙語詞彙資料庫「環境科學大辭典」.
    [16] Fujita, E. M.; Watson, J. G.; Chow, J. C.; Magliano, K. L., Atmospheric Environment, 1995, 29 (21), 3019-3035.
    [17] Baltrėnas, P., Baltrėnaitė, E., Šerevičienė, V. et al. , Environmental Monitoring and Assessment, 2011, 182, 115–127.
    [18] Lee, W.-J.; Lin Lewis, S. J.; Chen, Y.-Y.; Wang, Y.-F.; Sheu, H.-L.; Su, C.-C.; Fan, Y.-C., Atmospheric Environment, 1996, 30 (13), 2371-2378.
    [19] Scott, N., Journal of the American Chemical Society, 1998, 120 (32), 8290-8291.
    [20] Srivastava, A., Devotta, S., Environmental Monitoring and Assessment, 2007, 133, 127–138.
    [21] Shendell, D. G.; Winer, A. M.; Stock, T. H.; Zhang, L.; Zhang, J.; Maberti, S.; Colome, S. D., Journal Of Exposure Analysis And Environmental Epidemiology, 2004, 14, 44.
    [22] Sexton, K.; Mongin, S. J.; Adgate, J. L.; Pratt, G. C.; Ramachandran, G.; Stock, T. H.; Morandi, M. T., Journal of Toxicology and Environmental Health, Part A, 2007, 70 (5), 465-476.
    [23] Raysoni, A. U.; Stock, T. H.; Sarnat, J. A.; Chavez, M. C.; Sarnat, S. E.; Montoya, T.; Holguin, F.; Li, W.-W., Environmental Pollution, 2017, 231, 681-693.
    [24] 陳揚桓. 南部某工業園區空氣品質與異味調查. 國立中山大學, 高雄市, 2014.
    [25] Chang, K.-H.; Chen, T.-F.; Huang, H.-C., Sci Total Environ, 2005, 346 (1-3), 184-199.
    [26] Pacifico, F.; Harrison, S. P.; Jones, C. D.; Sitch, S., Atmospheric Environment, 2009, 43 (39), 6121-6135.
    [27] 蘇源昌. 自動氣相層析質譜儀於揮發性有機化合物之分析技術與應用. 國立中央大學, 桃園縣, 2011.
    [28] Atkinson, R., Atmospheric Environment, 2000, 34 (12), 2063-2101.
    [29] Kuráň, P.; Soják, L., Journal of Chromatography A, 1996, 733 (1), 119-141.
    [30] 高雄市政府環境保護局「空氣品質管理中心」, 有害空氣污染物介紹. http://www.ksaqmc.com.tw/pollutioninfo/PK4.aspx.
    [31] Dewulf, J.; Van Langenhove, H., Atmospheric Environment, 1997, 31 (20), 3291-3307.
    [32] 國際癌症研究署 IARC, 人類致癌因子分類表. http://monographs.iarc.fr/ENG/Classification/index.php
    [33] World Health Organization, IARC: Outdoor air pollution a leading environmental cause of cancer deaths. WHO press release: October 17, 2013.
    [34] Straif, K., Cohen, A. and Samet, J., Air Pollution and Cancer. IARC Scientific Publication No. 161.
    [35] U.S. EPA, Control of Volatile Organic Emissions from Existing Stationary Sources, vol. II, Source Coating of Cans, Coils, Papers, Fabrics, Automobiles, and Light-Duty Trucks.. EPA-450/2-77-008: 1977.
    [36] 行政院環境保護署, 空氣污染防制法「固定污染源空氣污染物排放標準」. 2012.
    [37] 行政院公報「衛生勞動篇」, 勞工作業場所容許暴露標準第十一條及第二條附表一、附表二修正草案總說明. 第 023 卷 ,第 184 期 20170927.
    [38] Lin, C.; Liou, N.; Sun, E., Journal of the Air & Waste Management Association, 2008, 58 (6), 821-828.
    [39] Volkamer, R. M., L. T.; Molina, M. J.; Shirley, T.; Brune,; H., W., Geophysical Research Letters, 2005, 32 (L08806).
    [40] Eckenrode, B. A., Journal of the American Society for Mass Spectrometry, 2001, 12 (6), 683-693.
    [41] Lindinger, W.; Hansel, A.; Jordan, A., International Journal of Mass Spectrometry and Ion Processes, 1998, 173 (3), 191-241.
    [42] Soo, J.-C.; Gyung Lee, E.; Lebouf, R.; Kashon, M.; Chisholm, W.; Harper, M., Journal of Occupational and Environmental Hygiene, 2018, 15.
    [43] 行政院環境保護署環境檢驗所, 空氣及物理檢測方法. https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=AIR.
    [44] 黃淑欣. 以雲端同步雙層析儀進行揮發性有機氣體污染之連續分析田野調查與數據統計方法研究. 國立臺灣師範大學, 台北市, 2017.
    [45] EPA, U. S., Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. 1999, Vol. EPA/625/R-96/010b.
    [46] 陳彥呈. 以NCLA9K4活性碳作為VOC濃縮介質與熱脫附方法之改良. 國立中央大學, 桃園縣, 2011.
    [47] Park, C.; Schade, G. W.; Boedeker, I., Atmospheric Environment, 2010, 44 (21), 2605-2614.
    [48] Schwarz, A.; Heumann, K., Analytical and Bioanalytical Chemistry, 2002, 374 (2), 212-219.
    [49] Boczkaj, G.; Kamiński, M.; Przyjazny, A., Industrial & Engineering Chemistry Research, 2010, 49 (24), 12654-12662.
    [50] Lindinger, C.; Pollien, P.; Ali, S.; Yeretzian, C.; Blank, I.; Märk, T., Analytical Chemistry, 2005, 77 (13), 4117-4124.
    [51] Dolch, M. E.; Hornuss, C.; Klocke, C.; Praun, S.; Villinger, J.; Denzer, W.; Schelling, G.; Schubert, S., European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31 (11), 3007-3013.
    [52] Scotter, J. M.; Langford, V. S.; Wilson, P. F.; McEwan, M. J.; Chambers, S. T., Journal of Microbiological Methods, 2005, 63 (2), 127-134.
    [53] Terry, S. C.; Jerman, J. H.; Angell, J. B., IEEE Transactions on Electron Devices, 1979, 26 (12), 1880-1886.
    [54] Wang, D.; Chong, S. L.; Malik, A., Analytical Chemistry, 1997, 69 (22), 4566-4576.
    [55] Lu, C.-J.; Steinecker, W. H.; Tian, W.-C.; Oborny, M. C.; Nichols, J. M.; Agah, M.; Potkay, J. A.; Chan, H. K. L.; Driscoll, J.; Sacks, R. D.; Wise, K. D.; Pang, S. W.; Zellers, E. T., Lab on a Chip, 2005, 5 (10), 1123-1131.
    [56] Meciarova, L.; Vilcekova, S.; Balintova, M., Measurement of VOCs with a portable GC/SAW detector. 2014, Vol. 40, pp 283-288.
    [57] Bae, B.; Kim, J.; Yeom, J.; Chen, Q.; Ray, C.; Shannon, M., Development of a portable gas analyzer using a micro-Gas Chromatograph/Flame Ionization Detector (micro-GC/FID) for NASA's environmental missions. In 42nd International Conference on Environmental Systems, American Institute of Aeronautics and Astronautics: 2012.
    [58] B. Angell, J.; Jerman, H.; C. Terry, S.; Saadat, S., A prototype gas analysis system using a miniature gas chromatograph. U.S. EPA, EPA-700/7-80-184: 1981, pp 32489.
    [59] Frye-Mason, G.; Kottenstette, R.; Mowry, C.; Morgan, C.; Manginell, R.; Lewis, P.; Matzke, C.; Dulleck, G.; Anderson, L.; Adkins, D. In Expanding the Capabilities and Applications of Gas Phase Miniature Chemical Analysis Systems (µChemLab™), Micro Total Analysis Systems 2001, Springer: 2001; pp 658-660.
    [60] Kottenstette, R. J.; Adkins, D. R.; Manley, R. G.; Lewis, P. R.; Bauer, J. M.; Manginell, R. P.; Okandan, M.; Shul, R. J.; Sokolowski, S. S., 2003.
    [61] Lu, C.-J.; Steinecker, W. H.; Tian, W.-C.; Oborny, M. C.; Nichols, J. M.; Agah, M.; Potkay, J. A.; Chan, H. K.; Driscoll, J.; Sacks, R. D., Lab on a Chip, 2005, 5 (10), 1123-1131.
    [62] 簡日昇. 微型氣相層析儀. 國立臺灣師範大學, 台北市, 2013.
    [63] INFICON, Micro GC Fusion® Gas Analyzer. https://products.inficon.com/en-us/nav-roducts/product/detail/micro-gc-fusion-gas-analyzer/.
    [64] Agilent, 490 Micro GC System. https://www.agilent.com/en-us/products/gas-chromatography/gc-systems/490-micro-gc-system.
    [65] APIX Analytics, ChromPix® 4d. https://www.apixanalytics.com/chrompix/.
    [66] 自由時報, 創入秋以來最糟空污 台南連34小時紅害. http://news.ltn.com.tw/news/life/breakingnews/2318802.
    [67] 蕭聖霖. 台南科學園區揮發性有機物時空分佈之探討. 高雄醫學大學, 高雄市, 2009.
    [68] 田湘薇. 臺南都會區車輛使用酒精汽油排放有害空氣污染物之影響研究. 國立成功大學, 台南市, 2014.
    [69] 自由時報, 怪味連夜臭翻高雄 市府研判是「空氣污染」. http://news.ltn.com.tw/news/life/breakingnews/2216593.
    [70] 經濟部加工出口區管理處, 楠梓加工出口區平面圖. https://www.epza.gov.tw/people/page.aspx?pageid=2e36d6003c51a7d0.
    [71] 林忠霆. 南部某工業區大氣中揮發性有機物時空特徵調查. 國立中山大學, 高雄市, 2014.
    [72] 行政院環境保護署, 環境檢驗檢量線製備及查核指引. NIEA-PA103: 94年1月15日.
    [73] 蔡孟哲. 楠梓加工區環境揮發性有機物污染源調查暨附近居民健康風險評估. 高雄醫學大學, 高雄市.
    [74] 國家教育研究院, 輻射逆溫, 雙語詞彙資料庫「環境科學大辭典」.
    [75] 經濟部工業局, GIS 地理資訊系統「台灣工業區土地資訊系統」.
    [76] 國家教育研究院, 斯皮曼等級相關係數(Spearman's Rank Correlation Coefficient), 教育大辭書.

    下載圖示
    QR CODE