Basic Search / Detailed Display

Author: 黃筱嵐
Xiao-Lan Huang
Thesis Title: 原子島在金屬/半導體介面的成長研究 (以鈷/銀/鍺(111)為例)
Study of atomic island growth on metal/semiconductor interfaces (as example of Co/Ag/Ge(111))
Advisor: 傅祖怡
Fu, Tsu-Yi
Degree: 博士
Doctor
Department: 物理學系
Department of Physics
Thesis Publication Year: 2012
Academic Year: 100
Language: 英文
Number of pages: 104
Keywords (in Chinese): CoGe(111)AgSTMepitaxyphase transformation
Keywords (in English): Co, Ge(111), Ag, STM, epitaxy, phase transformation
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 435Downloads: 2
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • The thermal reaction of Co on Ag/Ge(111)-(√3×√3)/(4×4) phases was studied by scanning tunneling microscopy, low energy electron diffraction, and Auger electron spectroscopy. Firstly, we address on the controversies over the chemical composition of Co islands by examining the thermal reaction of Co on "Ag/Ge(111)-" √3×√3 phase, as well as the coexisting Ag/Ge(111)-4×4 phase. From the study, one finds that Ag atoms shift from (4×4) phase to (√3×√3) phase because of the interaction between Co and the surface. The fact suggests that it is on the surface where Ag-less phase (4×4) transforms into Ag-richer phase (√3×√3). Secondly, we proof that (√13×√13) periodicity is composed of Co-Ge alloy, whereas (2×2) periodicity is composed of pure Co. Thirdly, we realize that it is "Ag/Ge(111)-" √3×√3 preventing Co from diffusing into substrate when annealing the surface at the temperature between 320 K and 730 K.
    It is known that Co"-" 2×2 islands grown on Ag/Ge(111)-√3×√3 surface are in hcp structure with a (11-20) orientation. The island evolution involves the shape transformation of a unit cell from parallelogram into rectangular. Meanwhile, the shape of the island shifts from hexagonal to stripe. In additions, it is identified that Co-2×2 islands grow along two crystallographic directions: pseudo-[0001] and pseudo-[1-100]. We observe a lateral shift between the topmost and the underlying bilayers for islands which grow along pseudo-[0001] direction. On the other hands, no lateral shift is perceived for those growing along pseudo-[1-100] direction.
    In terms of the strain–relaxation of Co-2×2 islands grown on Ag/Ge(111)-√3×√3 surface, we analyze the images taken by scanning tunneling microscopy. From the studies, one realizes a common fact that Co"-" 2×2 islands adopt a more compact arrangement than Ge(111) substrate does, whereas each Co-2×2 island is different in the degree of atomic compactness. Yet, we do not observe any distinct relationship between strain–relaxation and the island height. In addition, we identify three different groups of islands from analyzing the correspondence between the strain–relaxation and the island size: (i) small islands (less than 80 nm2) with fixed inter-row distances in high atomic compactness, (ii) small islands with unfixed inter-row distances, and (iii) big islands (bigger than 80 nm2) with fixed inter-row distances in less compact atomic arrangement, as compared to the first two groups. Based on the obtained information, we propose the model that explains the relationship between the strain–relaxation and the island size.
    Regarding electronic structure, we study "Ag/Ge(111)-" 4×4 phase, "Ag/Ge(111)-" √3×√3 phase, Co"-" 2×2 island, and "CoxGey-" √13×√13 island by means of scanning tunneling spectroscopy at room temperature. Similar to the one acquired from "Ge(111)-c" 2×8, the spectrum obtained from Ag/Ge(111)-4×4 structure reveals a shoulder at 0.7 V, which indicates that Ge adatoms were donated to the electronic states of the Ag-driven phase. However, the electronic spectrum taken from the "CoxGey-" √13×√13 island shows a large number of peaks, which indicates the complex bonding between "CoxGey-" √13×√13 island and the substrate. In addition, the spectra obtained from the Co-2×2 island grown on the step demonstrate a number of peaks at negative sample bias, which is different comparing to those taken from the Co-2×2 island located on the terrace. The phenomenon explains the various Co-substrate interactions, which are accompanied with the growth of Co islands at different areas of the stepped surface.

    The thermal reaction of Co on Ag/Ge(111)-(√3×√3)/(4×4) phases was studied by scanning tunneling microscopy, low energy electron diffraction, and Auger electron spectroscopy. Firstly, we address on the controversies over the chemical composition of Co islands by examining the thermal reaction of Co on "Ag/Ge(111)-" √3×√3 phase, as well as the coexisting Ag/Ge(111)-4×4 phase. From the study, one finds that Ag atoms shift from (4×4) phase to (√3×√3) phase because of the interaction between Co and the surface. The fact suggests that it is on the surface where Ag-less phase (4×4) transforms into Ag-richer phase (√3×√3). Secondly, we proof that (√13×√13) periodicity is composed of Co-Ge alloy, whereas (2×2) periodicity is composed of pure Co. Thirdly, we realize that it is "Ag/Ge(111)-" √3×√3 preventing Co from diffusing into substrate when annealing the surface at the temperature between 320 K and 730 K.
    It is known that Co"-" 2×2 islands grown on Ag/Ge(111)-√3×√3 surface are in hcp structure with a (11-20) orientation. The island evolution involves the shape transformation of a unit cell from parallelogram into rectangular. Meanwhile, the shape of the island shifts from hexagonal to stripe. In additions, it is identified that Co-2×2 islands grow along two crystallographic directions: pseudo-[0001] and pseudo-[1-100]. We observe a lateral shift between the topmost and the underlying bilayers for islands which grow along pseudo-[0001] direction. On the other hands, no lateral shift is perceived for those growing along pseudo-[1-100] direction.
    In terms of the strain–relaxation of Co-2×2 islands grown on Ag/Ge(111)-√3×√3 surface, we analyze the images taken by scanning tunneling microscopy. From the studies, one realizes a common fact that Co"-" 2×2 islands adopt a more compact arrangement than Ge(111) substrate does, whereas each Co-2×2 island is different in the degree of atomic compactness. Yet, we do not observe any distinct relationship between strain–relaxation and the island height. In addition, we identify three different groups of islands from analyzing the correspondence between the strain–relaxation and the island size: (i) small islands (less than 80 nm2) with fixed inter-row distances in high atomic compactness, (ii) small islands with unfixed inter-row distances, and (iii) big islands (bigger than 80 nm2) with fixed inter-row distances in less compact atomic arrangement, as compared to the first two groups. Based on the obtained information, we propose the model that explains the relationship between the strain–relaxation and the island size.
    Regarding electronic structure, we study "Ag/Ge(111)-" 4×4 phase, "Ag/Ge(111)-" √3×√3 phase, Co"-" 2×2 island, and "CoxGey-" √13×√13 island by means of scanning tunneling spectroscopy at room temperature. Similar to the one acquired from "Ge(111)-c" 2×8, the spectrum obtained from Ag/Ge(111)-4×4 structure reveals a shoulder at 0.7 V, which indicates that Ge adatoms were donated to the electronic states of the Ag-driven phase. However, the electronic spectrum taken from the "CoxGey-" √13×√13 island shows a large number of peaks, which indicates the complex bonding between "CoxGey-" √13×√13 island and the substrate. In addition, the spectra obtained from the Co-2×2 island grown on the step demonstrate a number of peaks at negative sample bias, which is different comparing to those taken from the Co-2×2 island located on the terrace. The phenomenon explains the various Co-substrate interactions, which are accompanied with the growth of Co islands at different areas of the stepped surface.

    Chapter 1 Introduction...1 1-1 Surface reconstruction...1 1-2 Ferromagnetic metals on the semiconductor surface...6 1-3 Structure transformation...7 1-4 Strain relaxation...9 1-5 Electronic structure...10 1-6 Previous studies in our lab...11 Chapter 2 Experimental Details...13 2-1 Principle of scanning tunneling microscopy (STM)...13 2-2 Principle of Auger electron microscopy (AES)...16 2-3 Principle of low energy electron diffraction (LEED)...18 2-4 The experimental setup and process...20 Chapter 3 Results and Discussion...25 3-1 Thermal evolution of Co on the coexisting Ag/Ge(111)-√3×√3 (Ag-√3×√3) and Ag/Ge(111)-4×4 (Ag-4×4) phases...25 3-2 Structure of Co-2×2 nanoislands on Ag/Ge(111)-√3×√3 surface...43 3-3 Strain–relaxation in the structure of Co-2×2 islands on Ag/Ge(111)-√3×√3 surface...59 3-4 Electronic structure of Co islands grown on the Ag/Ge(111)-√3×√3 surface...75 Chapter 4 Conclusion...85 Reference...89

    [1] A. Ramstad, G. Brocks, P.J. Kelly, Phys. Rev. B 51 (1995) 14504.
    [2] J.A. Appelbaum, G.A. Baraff, D.R. Hamann, Phys. Rev. B 14 (1976) 588.
    [3] J.A. Kubby, J.J. Boland, Surf. Sci. Rep. 26 (1996) 61.
    [4] A. Alekseev, V. Kotlyar, O.A. Utas, D.V. Gruznev, A.V. Matetskiy, A.V. Zotov, A.A. Saranin, Surf. Sci. 604 (2010) 1400.
    [5] X.F. Lin, K.J. Wan, J. Nogami, Phys. Rev. B 47 (1993) 13491.
    [6] X.F. Lin, K.J. Wan, J. Nogami, Phys. Rev. B 47 (1993) 10947.
    [7] T. Michely, M.C. Reuter, M. Copel, R.M. Tromp, Phys. Rev. Lett. 73 (1994) 2095.
    [8] X.F. Lin, K.J. Wan, J. Nogami, Phys. Rev. B 49 (1994) 7385.
    [9] M. Dubois, L. Perdigão, C. Delerue*, G. Allan, B. Grandidier, D. Deresmes, D. Stiévenard, Phys. Rev. B 71 (2005) 165322.
    [10] X.F. Zhang, Y.X. Cai, F. Chen, H.H. Kong, H.P OuYang, S.Y. Liu, X.Q. Liu, L. Wang, Phys. Rev. B 84 (2011) 153411.
    [11] N. Takeuchi, Phys. Rev. B, 55 (1997) 2416.
    [12] N. Takeuchi, Phys. Rev. B, 56 (1997) 7446.
    [13] M.E. González Méndez, N. Takeuchi, Surf. Sci. 432 (1999) 239.
    [14] W.C.A.N. Ceelen, B. Moest, M. de Ridder, L.J. van Ijzendoorn, A.W.D. van der Gon, H.H. Brongersma, Appl. Surf. Sci. 134 (1998) 87.
    [15] G. Yang, J.H. Kim, S. Yang, A.H. Weiss, Surf. Sci. 367 (1996) 45.
    [16] K. Hricovini, J.E. Bonnet, B. Carrière, J.P. Deville, M. Hanbücken, G.L. Lay, Surf. Sci. 211 (1989) 360.
    [17] Z.H. Lu, T.K. Sham, K. Griffiths, P.R. Norton, Solid State Commun. 76 (1990) 113.
    [18] E. Landree, D. Grozea, C. Collazo-Davila, L. D. Marks, Phys. Rev. B 55 (1997) 7910.
    [19] M. Kageshima, Y. Torii, Y. Tano, O. Takeuchi, A. Kawazu, Surf. Sci. 472 (2001) 51.
    [20] K. Oura, T. Hanawa, Surf. Sci. 82 (1979) 202.
    [21] K. Oura, Y. Makino, T. Hanawa, Jpn. J. Appl. Phys. 15 (1976) 737.
    [22] H. Minoda, T. Shimakura, K. Yagi, Phys. Rev. B 61 (2000) 5672.
    [23] W.C.A.N. Ceelen, M. de Ridder, B. Moest, A.W. Denier van der Gon, H.H. Brongersma, Surf. Sci., 430 (1999) 146.
    [24] H. Minoda, K. Yagi, F.J. Meyer zu Heringdorf, A. Meier, D. Kähler, M. Horn von Hoegen, Phys. Rev. B 59 (1999) 2363.
    [25] M. Horn-von Hoegen, F.J. Meyer zu Heringdorf, R. Hild, P. Zahl, Th. Schmidt, E. Bauer, Surf. Sci., 433–435 (1999) 475.
    [26] X.F. Lin, K.J. Wan, J.C. Glueckstein, J. Nogami, Phys. Rev. B, 47 (1993) 3677.
    [27] T. Shimakura, H. Minoda, Y. Tanishiro, K. Yagi, Surf. Sci. 407 (1998) L657.
    [28] Z.H. Liu, Z.H. Zhang, X. Zhu, Phys. Rev. B 77 (2008) 035322.
    [29] Y.J. Wang, R.J. Hamers, E. Kaxiras, Phys. Rev. Lett. 74, (1995) 403.
    [30] R. Miotto, A.C. Ferraz, Surf. Sci. 603 (2009) 1229.
    [31] P. Sonnet, L. Stauffer, Prog. Surf. Sci. 81 (2006) 444.
    [32] K. Miki, K. Sakamoto, T. Sakamoto, Appl. Phys. Lett. 71 (1997) 3266.
    [33] S.T. Jemander, H.M. Zhang, R.I.G. Uhrberg, G.V. Hansson, Phys. Rev. B 65 (2002) 115321.
    [34] H.W. Yeom, J.W. Kim, K. Tono, I. Matsuda, T. Ohta, Phys. Rev. B 67 (2003) 085310.
    [35] J. Kraft, S.L. Surnev, F.P. Netzer, Surf. Sci. 340 (1995) 36.
    [36] R.G. Zhao, J.F. Jia, W.S. Yang, Surf. Sci. 274 (1992) L519.
    [37] G. Falkenberg, R.L. Johnson, N. Takeuchi, Phys. Rev. B 64 (2001) 035304.
    [38] L. Li, C. Koziol, K. Wurm, Y. Hong, E. Bauer, I.S.T. Tsong, Phys. Rev. B 50 (1994) 10834.
    [39] D.H. Rich, G.E. Franklin, F.M. Leibsle, T. Miller, T.C. Chiang, Phys. Rev. B 40 (1989) 11804.
    [40] A. Cricenti, S. Selci, A.C. Felici, L. Ferrari, G. Chiarotti, Solid State Commun. 86 (1993) 667
    [41] M. Richter, J.C. Woicik, J. Nogami, P. Pianetta, K.E. Miyano, A.A. Baski, T. Kendlewicz, C.E. Bouldin, W.E. Spicer, C.F. Quate, I. Lindau, Phys. Rev. Lett. 65 (1990) 3417.
    [42] S.J. Jenkins, G.P. Srivastava, Surf. Sci. 352–353 (1996) 411.
    [43] S.D. Kevan, Phys. Rev. B 32 (1985) 2344.
    [44] R. Rossmann, H.L. Meyerheim, V. Jahns, J. Wever, W. Moritz, D. Wolf, D. Dornisch, H. Schulz, Surf. Sci. 279 (1992) 199.
    [45] J. Schäfer, C. Blumenstein, S. Meyer, M. Wisniewski, R. Claessen, Phys. Rev. Lett. 101 (2008) 236802.
    [46] S. Meyer, J. Schäfer, C. Blumenstein, P. Höpfner, A. Bostwick, J.L. McChesney, E. Rotenberg, R. Claessen, Phys. Rev. B 83 (2011)121411.
    [47] G. Krausch, T. Detzel, H. Bielefeldt, R. Fink, B. Luckscheiter, R. Platzer, U. Wiihrmann, G. Schatz, Appl. Phys. A 53 (1991) 324.
    [48] D.H. Rich, T. Miller, T.C. Chiang, Phys. Rev. B 41 (1990) 3004.
    [49] Y. Zhang, R.G. Zhao, W.S. Yang, Surf. Sci. 298 (1993) L821.
    [50] N. Takeuchi, Phys. Rev. B 55 (1997) 2417.
    [51] P.C. Kelires J. Tersoff, Phys. Rev. Lett. 63 (1989) 1164.
    [52] A.V. Latyshev, A.B. Krasilnikov, A.L. Aseev, L.V. Sokolov, S.I. Stenin, Surf. Sci. 254 (1991) 90.
    [53] K.C. Pandey, Phys. Rev. Lett. 47 (1981) 1913.
    [54] R.S. Becker, B.S. Swartzentruber, J.S. Vickers, T. Klitsner, Phys. Rev. B 39 (1989) 1633.
    [55] R.D. Meade, D. Vanderbilt, Phys. Rev. B 40 (1989) 3905.
    [56] W.C. Fan, A. Ignatiev, H. Huang, S.Y. Tong, Phys. Rev. Lett. 62 (1989) 1516.
    [57] A. Urbietaa, K. Schulte, B. Grandidiera, D. Deresmesa, S.C. Erwinc, D. Stiévenarda, Surf. Sci. 603 (2009) 311.
    [58] J.M. Carpinelli, H.H. Weitering, Phys. Rev. B, 53 (1996) 12651.
    [59] K. Sakamoto, H. Ashima, H.M. Zhang, R.I.G. Uhrberg, Phys. Rev. B, 65 (2001) 045305.
    [60] N. Miyata, I. Matsuda, M. D’Angelo, H. Morikawa, T. Hirahara, S. Hasegawa, e-J. Surf. Sci. Nanotechnol. 3 (2005) 151.
    [61] T Dütemeyer, L.S.O. Johansson, C. Quitmann, B. Reihl, Surf. Sci. 482-485 (2001) 600.
    [62] D. Grozea, E. Bengu, L.D. Marks, Surf. Sci. 461 (2000) 23.
    [63] T. Hasegawa, K. Takata, S. Hosaka, S. Hosoki, J. Vac. Sci. Technol. B 9 (1991) 758.
    [64] T. Hasegawa, S. Hosaka, S. Hosoki, Jpn. J. Appl. Phys. 31 (1992) L1492.
    [65] T. Hasegawa, S. Hosaka, S. Hosoki, Surf. Sci. 358 (1996) 858.
    [66] W. Świȩch, E. Bauer, M. Mundschau, Surf. Sci. 253 (1991) 283.
    [67] S. Takahashi, Y. Tanishiro, K. Takayanagi, Surf. Sci. 242 (1991) 73.
    [68] Y. Tanishiro, K. Takayanagi, Ultramicroscopy 27 (1989) 1.
    [69] J. Yuhara, M. Inoue, K. Morita, J. Vac. Sci. Technol. A 10 (1992) 334.
    [70] J. Yuhara, M. Inoue, K. Morita, J. Vac. Sci. Technol. A 10 (1992) 3486.
    [71] H. Daimon, C. Chung, S. Ino, Y. Watanabe, Surf. Sci. 235 (1990) 142.
    [72] A. Shibata, Y. Kimura, K. Takayanagi, Surf. Sci. 273 (1992) L430.
    [73] K. Fuchigami, A. Ichimiya, Surf. Sci. 357–358 (1996) 937.
    [74] K. Miki, Y. Morita, H. Tokumoto, T. Sato, M. Iwatsuki, M. Suzuki, T. Fukuda, Ultramicroscopy 42 (1992) 851.
    [75] A. Ichimiya, H. Nomura, Y. Ito, H. Iwashige, J. Cryst. Growth 150 (1995) 1169.
    [76] T. Kamino, T. Yaguchi, M. Tomita, H. Saka, Philos. Mag. A: 75 (1996) 105.
    [77] H. Minoda, Y. Tanishiro, N. Yamamoto, K. Yagi, Appl. Surf. Sci. 60 (1992) 107.
    [78] L.E. Berman, B.W. Batterman, J.M. Blakely, Phys. Rev. B 38 (1988) 5397.
    [79] S. C. Erwin, I. Barke, F.J. Himpsel, Phys. Rev. B 80 (2009) 155409.
    [80] H.L. Headrick, B.E. Weir, J. Bevk, B.S. Freer, D.J. Eaglesham, L.C. Feldman, Phys. Rev. Lett. 65 (1990) 1128.
    [81] A. Fissel, J. Krügener, D. Schwendt, H. J. Osten, Phys. Status Solidi A 207 (2010) 245.
    [82] A. Fissel, J. Krügener, H.J. Osten, J. Cryst. Growth 323 (2011) 144.
    [83] H.L. Headrick, I.K. Robinson, E. Vlieg, L.C. Feldman, Phys. Rev. Lett. 63 (1989) 1253.
    [84] P. Bedrossian, R.D. Maede, K. Mortensen, D.M. Chen, J.A. Golovchenko, D. Vanderbilt, Phys. Rev. Lett. 63 (1989) 1257
    [85] I.W. Lyo, E. Kaxiras, Ph. Avouris, Phys. Rev. Lett. 63 (1989) 1261
    [86] N.D. Kim, T.S. Kang, J.H. Je, H.J. Kim, D.Y. Noh J.W. Chung, Appl. Phys. A 91 (2008) 53.
    [87] G. Lee, S. Hong, H. Kim, D. Shin, J.Y. Koo, H.I. Lee, D.W. Moon, Phys. Rev. Lett. 87 (2001) 056104.
    [88] R. Shioda, A. Kawazu, A.A. Baski C.F. Quate, J. Nogami, Phys. Rev. B. 48 (1993) 4895.
    [89] R.H. Miwa, T.M. Schmidt G.P. Srivastava, J. Phys.: Condens. Matter 15 (2003) 2441.
    [90] P. Castrucci, A. Sgarlata, M. Scarselli, M.D. Crescenzi, Surf. Sci. 531 (2003) L329.
    [91] A.A. Baski, S.C. Erwin, M.S. Turner, K.M. Jones, J.W. Dickinson, J.A. Carlisle, Surf. Sci. 476 (2001) 22.
    [92] O. Gallus, Th. Pillo, P. Starowicz Y. Baer, Europhys. Lett. 60 (2002) 903.
    [93] J. Nogami, S.I. Park, C.F. Quate, Surf. Sci. 203 (1988) L631.
    [94] J. Zegenhagen, J.R. Patel, P. Freeland, D.M. Chen, J.A. Golovchenko, P. Bedrossian, J.E. Northrup, Phys. Rev. B 39 (1989) 1298.
    [95] U. Köhler, O. Jusko, G. Pietsch, B. Müller, M. Henzler, Surf. Sci. 248 (1991) 321.
    [96] L. Yan, Y.P. Zhang, H.J. Gao, S.S. Xie, S.J. Pang, Surf. Sci. 506 (2002) L255.
    [97] O. Bunk, G. Falkenberg, J.H. Zeysing, L. Lottermoser, R.L. Johnson, M. Nielsen, F. Berg-Rasmussen, J. Baker, R. Feidenhans’l, Phys. Rev. B 59 (1999) 12228.
    [98] J.J. Lander, J. Morrison, Surf. Sci. 2 (1964) 553.
    [99] J.J. Lander, J. Morrison, J. Appl. Phys. 36 (1965) 1706.
    [100] S. Baba, M. Kawaji, A. Kinbara, Surf. Sci. 85 (1979) 29.
    [101] S. Baba, H. Hirayama, J.M. Zhou, A. Kinbara, Thin Solid Films 90 (1982) 57.
    [102] J.M. Nicholls, B. Reihl, J.E. Northrup, Phys. Rev. B 35 (1987) 4137.
    [103] J. Nogami, S. Park, C.F. Quate, J. Vac. Sci. Technol. B 6 (1988) 1479.
    [104] J.C. Woicik, T. Kendelewicz, A. Herrera-Gomez, K.E. Miyano, P.L. Cowan, C.E. Bouldin, P. Pianetta, W.E. Spicer, Phys. Rev. Lett. 71 (1993) 1204.
    [105] M.S. Finney, C. Norris, P.B. Howes, R.G. Van Silfhout, G.F. Clark, J.M.C. Thornton, Surf. Sci. 291 (1993) 99.
    [106] M. Sun, C. Hu, R.G. Zhao, H. Ji, Thin Solid Films 489 (2005) 111.
    [107] T. Aiyama, S. Ino, Surf. Sci. 82 (1979) L585.
    [108] S. Park, J. Nogami, C.F. Quate, J. Microsco. 152 (1988) 727.
    [109] A.A. Saranin, A.V. Zotov, A.N. Tovpik, M.A. Cherevik, E.N. Chukurov, V.G. Lifshits, M. Katayama, K. Oura, Surf. Sci. 450 (2000) 34.
    [110] J. Nogami, S. Park, C.F. Quate, Phys. Rev. B 36 (1987) 6221.
    [111] J.L. Stevens, M. Worthington, I.S.T. Tsong, Phys. Rev. B 47 (1993) 1453.
    [112] T. Abukawa, M. Sasaki, F. Hisamatsu, T. Goto, K. Kinoshita, A. Kakizaki, S. Kono, Surf. Sci. 325 (1995) 33.
    [113] J. Kraft, M.G. Ramsey, F.P. Netzer, Phys. Rev. B 55 (1997) 5384.
    [114] A.A. Saranin, A.V. Zotov, K.V. Ignatovich, V.G. Lifshits, T. Numata, O. Kubo, H. Tani, M. Katayama, K. Oura, Phys. Rev. B 56 (1997) 1017.
    [115] J.M. Zhou, S. Baba, A. Kinbara, Thin Solid Films 98 (1982) 109.
    [116] Q. Bunk, G. Falkenberg, J. H. Zeysing, L. Lottermoser, R. L. Johnson, M. Nielsen, F. Berg-Rasmunssen, J. Baker, R. Feidenhans'l, Phys. Rev. B 59 (1999) 12228.
    [117] H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C.M. Lee, S.D. Kevan, T. Ohta, T. Nagano, S. Hasegawa, Phys. Rev. Lett. 82 (1999) 4898.
    [118] C. Kumpf, O. Bunk, J.H. Zeysing, Y. Su, M. Nielsen, R.L. Johnson, R. Feidenhans'l, K. Bechgaard, Phys. Rev. Lett. 85 (2000) 4916.
    [119] S.V. Ryjkov, T. Nagao, V.G. Lifshits, S. Hasegawa, Surf. Sci. 488 (2001) 15.
    [120] E. Rotenberg, H. Koh, K. Rossnagel, H.W. Yeom, J. Schafer, B. Krenzer, M.P. Rocha, S.D. Kevan, Phys. Rev. Lett. 91 (2003) 246404.
    [121] J. Kraft, M.G. Ramsey, F.P. Netzer, Surf. Sci. 372 (1997) L271.
    [122] A.A. Saranin, A.V. Zotov, T. Numata, O. Kubo, M. Katayama, K. Oura, K.V. Ignatovich, V.G. Lifshits, Surf. Sci. 388 (1997) 299.
    [123] G. Hill, A.B. McLean, Phys. Rev. Lett. 82 (1999) 2155.
    [124] C. Tournier-Colletta, L. Cardenas, Y. Fagot-Revurat, A. Tejeda1, B. Kierren, D. Malterre, Phys. Rev. B. 84. (2011) 155443
    [125] S. Jeong, M.H. Kang, Phys. Rev. B.54 (1996) 8196.
    [126] T.M. Grehk, M. Göthelid, M. Björkqvist, Phys. Rev. B 61 (2000) 4963.
    [127] Kubo, A.A. Saranin, A.V. Zotov, J.T. Ryu, H. Tani, T. Harada, M. Katayama, V.G. Lifshits, K. Oura, Surf. Sci. 415 (1998) L971.
    [128] D. Vandré, L. Incoccia, G. Kaindl, Vacuum 41 (1990) 687.
    [129] D. Vandré, L. Incoccia, G. Kaindl, Surf. Sci. 225 (1990) 233.
    [130] M.M.R. Evans, J.C. Glueckstein, J. Nogami, Phys. Rev. B. 53 (1996) 4000.
    [131] M. Tanaka, Q. Zhang, M. Takeguchi, K. Furuya, Surf. Sci. 532-535 (2003) 946.
    [132] J.H. Grytzelius, H.M. Zhang, L.S.O. Johansson, Phys. Rev. B. 80 (2009) 235324.
    [133] A. Kumar, M. Tallarida, M. Hansmann, U. Starke, K. Horn, J. Phys. D 37 (2004) 1083.
    [134] M. Hortamani, P. Kratzer, M. Scheffler, Phys. Rev. B 76 (2007) 235426.
    [135] S.M. Shivaprasad, C. Anandan, S.G. Azatyan, Y.L. Gavriljuk, V.G. Lifshits, Surf. Sci. 382 (1997) 258.
    [136] T. Nagao, S. Ohuchi, Y. Matsuoka, S. Hasegawa, Surf. Sci. 419 (1999) 134.
    [137] A.A. Saranin, A.V. Zotov, V.G. Lifshits, J.T. Ryu, O. Kubo, H. Tani, T. Harada, M. Katayama, K. Oura, Phys. Rev. B. 8 (1998) 3545
    [138] C.H. Hsu, F.C. Chuang, M.A. Albao, V. Yeh, Phys. Rev. B 81 (2010) 033407.
    [139] C. Kim, D.A. Walko, I.K. Robinson, Surf. Sci. 383 (1997) 242.
    [140] S. Bengió, M. Martin, J. Avila, M.C. Asensio, H. Ascolani, Phys. Rev. B 65 (2002) 205326.
    [141] P. Mårtensson, G. Meyer, N. M. Amer, E. Kaxiras, K. C. Pandey, Phys. Rev. B 42 (1990) 7230.
    [142] S. Teys, B. Olshanetsky, R. Zhachuk, S. Pereira, G. Norga, Appl. Phys. Lett. 93 (2008) 161912.
    [143] W. C. Fan, A. Ignatiev, Phys. Rev. B 40 (1989) 5479.
    [144] H.J. Gossmann, J.C. Bean, L.C. Feldman, E.G. McRae, I.K. Robinson, Phys. Rev. Lett. 55 (1985) 1106.
    [145] R. Feidenhans’l, J.S. Pedersen, J. Bohr, M. Nielsen, F. Grey, R. L. Johnson, Phys. Rev. B 38 (1988) 9715.
    [146] D.J. Spence, S.P. Tear, Surf. Sci. 398 (1998) 91.
    [147] D. Grozea, E. Bengu, C. Collazo-Davila, L.D. Marks, Surf. Rev. Lett. 6 (1999) 1061.
    [148] C. Collazo-Davila, D. Grozea, L.D. Marks, R. Feidenhans’l, M. Nielsen, L. Seehofer, L. Lottermoser, G. Falkenberg, R.L. Johnson, M. Göthelid, U. Karlsson, Surf. Sci. 418 (1998) 395.
    [149] H.H. Weitering, J.M. Carpinelli, Surf. Sci. 384 (1997) 240.
    [150] M. Göthelid, M. Hammar, U.O. Karlsson, C. Wigren, G. LeLay, Phys. Rev. B 52 (1995) 14104.
    [151] M. Hammar, M. Gothelid, U.O. Karlsson, S.A. Flodstrom, Phys. Rev. B 47 (1993) 15669.
    [152] F.L. Metcalfe, J.A. Venables, Surf. Sci. 369 (1996) 99.
    [153] H. Huang, H. Over, S.Y. Tong, J. Quinn, F. Jona, Phys. Rev. B 49 (1994) 13483.
    [154] D. Dornisch, W. Moritz, H. Schulz, Surf. Sci. 274 (1992) 215.
    [155] H. Busch, M Henzler, Phys. Rev. B 41 (1989) 4891.
    [156] R.J. Phaneuf, M.B. Webb, Surf. Sci. 164 (1985) 167.
    [157] B.J. Knapp, J.C. Hansen, M.K. Wagner, W.D. Clendening, J.G. Tobin, Phys. Rev. B 40 (1998) 2814.
    [158] E. Suliga, M. Henzler, J. Phys. C: Solid State Phys. 16 (1983) 1543.
    [159] M. Bertucci, G.L. Lay, M. Manneville, R. Kern, Surf. Sci. 85 (1979) 471.
    [160] H.M. Zhang, R.I.G. Uhrberg, Surf. Sci. 546 (2003) L789
    [161] H.M. Zhang, T. Balasubramanian, R.I.G. Uhrberg, Phys. Rev, B 63 (2001) 195402
    [162] R.D. Bringans, R.I.G. Uhrberg, R.Z. Bachrach, J.E. Northrup, Phys. Rev. Lett. 55 (1985) 533.
    [163] A. Rettenberger, R. Haight, Surf. Sci. 414 (1998) 197.
    [164] M. Göthelid, M. Hammar, M. Björkqvist, U.O. Karlsson, S.A. Flodström, C. Wigren, G. LeLay, Phys. Rev. B 50 (1994) 4470.
    [165] L. Seehofer, R.L. Johnson, Surf. Sci. 318 (1994) 21.
    [166] K.J. Wan, W.K. Ford, G.J. Lapeyre, J.C. Hermanson, Phys. Rev. B 44 (1991) 6500.
    [167] H.E. Elsayed-Ali, X.L. Zeng, Surf. Sci. 538 (2003) 23.
    [168] P. Molina`s-Mata, J. Zegenhagen, Phys. Rev. B 47 (1993) 10319.
    [169] T. Ichikawa, Surf. Sci. 111 (1981) 227.
    [170] L. Sangaletti, D. Ghidoni, S. Pagliara, A. Goldoni, A. Morgante, L. Floreano, A. Cossaro, M.C. Mozzati, C.B. Azzoni, Phys. Rev. B 72 (2005) 035434.
    [171] N. Takeuchi, Phys. Rev. B 53 (1996) 7996.
    [172] T. Kendelewicz, J.C. Woicik, K.E. Miyano, S.A. Yoshikawa P. Pianetta, W.E. Spicer, J. Vac. Sci. Technol. A 12 (1994) 1843.
    [173] M. Göthelid, M. Björkqvist T.M. Grehk, G. LeLay, U.O. Karlsson, Phys. Rev. B 52 (1995) R14352.
    [174] Y. Sato, S. Chiang, Surf. Sci. 603 (2009) 2300.
    [175] H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, M. Kawasaki, Nat. Mater. 3 (2004) 221.
    [176] M. Yamanouchi, D. Chiba, F. Matsukura, H. Ohno, Nature 428 (2004) 539.
    [177] D. Chiba, M. Yamanouchi, F. Matsukura, H. Ohno, Science 301 (2003) 943.
    [178] Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Nature 402 (1999) 790.
    [179] Y. Yamada, K. Ueno, T. Fukumura, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, M. Kawasaki, Science 332 (2011) 1065.
    [180] Y.B. Xu, D.J. Freeland, E.T.M. Kernohan, W.Y. Lee, M. Tselepi, C.M. Guertler, C.A.F. Vaz, J.A.C. Bland, S.N. Holmes, N.K. Patel, D.A. Ritchie, J. Appl. Phys. 85 (1999) 5367.
    [181] N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Adv. Mater. 17 (2005) 2225.
    [182] K. Ando, Science 312 (2006) 1883.
    [183] Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, B.T. Jonker, Science 295 (2002) 651.
    [184] J.A. Kubby and J.J. Boland, Surf. Sci. Rep. 26 (1996) 173.
    [185] C. Kittel, Introduction to Solid State Physics 7th ed., Wiley, New York, (1996).
    [186] J.S. Tsay, H.Y. Nieh, Y.D. Yao, Y.T. Chen, W.C. Cheng, Surf. Sci. 566-568 (2004) 226.
    [187] J.S. Tsay, Y.T. Chen, W.C. Cheng, Y.D. Yao, J. Magn. Magn. Mater. 282 (2004) 81.
    [188] J.S Tsay, H.Y Nieh, C.S Yang, Y.D Yao, J. Magn. Magn. Mater. 272-276 (2004) E829.
    [189] J.S. Tsay, H.Y. Nieh, Y.D. Yao, T.S. Chin, J. Magn. Magn. Mater. 282 (2004) 78.
    [190] W.B. Zeper, F.J.A.M Greidanus, P.F. Carcia, C.R. Fincher, J. Appl. Phys. 65 (1989) 4971.
    [191] C. Chappert, K. Le Dang, Beauvillain, H. Hurdequint, D. Renard, Phys. Rev. B 34 (1986) 3192.
    [192] M. Ayadi, R. Belhi, N. Mliki, K. Abdelmoula, Ferré, J.P. Jamet, J. Magn. Magn. Mater 247 (2002) 215.
    [193] T. Kehagias, P. Komninou, C. Christides, G. Nouet, S. Stavroyiannis, Th. Karakostas, J. Cryst. Growth 208 (2000) 401.
    [194] S. Jomni, N. Mliki, R. Belhi, K. Abdelmoula, M. Ayadi, G. Nihoul, Thin Solid Films 370 (2000) 186.
    [195] B.P. Tonner, Z.L. Han, J. Zhang, Phys. Rev. B 47 (1993) 9723.
    [196] P.A. Bennett, S.A. Parikh, D.G. Cahill, J. Vac. Sci. Technol., A 11 (1993) 1680.
    [197] P.A. Bennett, D.G. Cahill, M. Copel, Phys. Rev. Lett. 73 (1994) 452.
    [198] H. Ikegami, H. Ikeda, S. Zaima, Y. Yasuda, Appl. Surf. Sci. 117 (118) (1997) 275.
    [199] B. Ilge, G. Palasantzas, J. de Nijs, L.J. Geerligs, Surf. Sci. 414 (1998) 279.
    [200] I. Ono, M. Yoshimura, K. Ueda, Jpn. J. Appl. Phys. 37 (1998) 7155.
    [201] G. Kinoda, K. Ogawa, Surf. Sci. 461 (2000) 67.
    [202] M.A.K. Zilani, L. Liu, H. Xu, Y.P. Feng, X.S.Wang, A.T.S.Wee, J. Phys. Condens.Matter 18 (2006) 6987.
    [203] Y.T. Cui, T. Xie, M. Ye, A. Kimura, S. Qiao, H. Namatama, M. Taniguchi, Appl. Surf. Sci. 254 (2008) 7684.
    [204] M. Cęgiel, M. Bazarnik, P. Biskupski, S. Winiarz, J. Gutek, A. Boś, S. Suto, S. Mielcarek, A. Wawro, R. Czajka, Appl. Surf. Sci. 254 (2008) 6948.
    [205] L. Chaput, F. Dulot, M.C. Hanf, P. Wetzel, Surf. Sci. 604 (2010) 513.
    [206] J. Choi, D.K. Kim, Y. Kim, S. Kim, J. Phys. Chem. C 114 (2010) 8992.
    [207] M. Odagiri, I. Mochizuki, Y. Shigeta, A. Tosaka, Appl. Phys. Lett. 97 (2010) 151911.
    [208] T. Ganguli, M. Vedvyas, P. Bhattacharya, L.M. Kukreja, A. Ingale, K.P. Adhi, K.S. Chandrashekharan, B.M. Arora, K.C. Rustagi, Thin Solid Films 388 (2001) 189.
    [209] Y. Li, M. Liu, D. Ma, D. Yu, X. Chen, X.-C. Ma, Q.-K. Xue, K. Xu, J.-F. Jia, F. Liu, Phys. Rev. Lett. 103 (2009) 076102.
    [210] M.T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C.M. Schneider, J. Kirschner, Phys. Rev. B 55 (1997) 5886.
    [211] B.Y. Wang, W.C. Lin, Y.W. Liao, K.J. Song, M.T. Lin, Surf. Sci. 600 (2006) 4517.
    [212] W. Pan, W.Ch. Lin, N.Y. Jih, Ch.H. Chuang, Y.Ch. Chen, Ch.Ch. Kuo, P.Ch. Huang, M.T. Lin, Phys. Rev. B 74 (2006) 224430.
    [213] H. Cęgiel, M. Bazarnik, P. Biskupski, S. Winiarz, J. Gutek, A. Bos, S. Suto, S. Mielczarek, A. Wawro, R. Czajka, Appl. Surf. Sci. 254 (2000) 6948.
    [214] A. Wawro, S. Suto, A. Kasuya, Phys. Rev. B 72 (2005) 205302.
    [215] A. Wawro, S. Suto, A. Kasuya, Jpn. J. Appl. Phys. 45 (2006) 2166.
    [216] H. Cęgiel, M. Bazarnik, R. Czajka, Cent. Eur. J. Phys. 7 (2009) 291.
    [217] A. Charrier, R. Perez, F. Thibaudau, J.M. Debever, J. Ortega, F. Flores, J.M. Themlin, Phys. Rev. B 64 (2001) 115407.
    [218] N. Oncel, W.J. van Beek, B. Poelsema, H.J.W. Zandvliet, New J. Phys. 9 (2007) 449.
    [219] E. Dupont-Ferrier, P.Mallet, L. Magaud, J.Y. Veuillen, Phys. Rev. B 75 (2007) 205315.
    [220] H. Suto, Y.Murata, T.Matsumoto, Y. Enomoto,M.Morifuji, S. Honda,M. Katayama, Appl. Phys. Express 2 (2009) 035002.
    [221] Y.P. Chiu, B.C. Chen, B.C. Huang, M.C. Shih, L.W. Tu, Appl. Phys. Lett. 96 (2010) 082107.
    [222] T.Y. Fu, C.L. Lin, S.L. Tsay, Surf. Sci. 600 (2006) 4058.
    [223] C.L. Lin, S.L. Tsay, C.R. Chen, X.L. Huang, T.Y. Fu, e-J. Surf. Sci. Nanotech. 7 (2009) 521.
    [224] C.L. Lin, S.L. Tsay, C.R. Chen, X.L. Huang, T.Y. Fu, J. Nanos. Nanot. 10 (2010) 4500.
    [225] T.Y. Fu, S.L. Tsay, C.L. Lin, J. Nanosci. Nanotechnol. 8 (2008) 608.
    [226] S.L. Tsay, C.Y. Kuo, C.L. Lin, W.C. Chen, T.Y. Fu, Surf. Interface Anal. 40 (2008) 1641.
    [227] C.J. Chen, Introduction to scanning tunneling microscopy, Oxford University Press, New York, 1993.
    [228] C.L. Bai, Scanning tunneling microscopy and its application, Springer, Berlin; New York, 2000.
    [229] R.J. Behm, N. Garcia, H. Rohrer, Scanning tunneling microscopy and related methods : Proceedings of the NATO Advanced Study Institute on Basic Concepts and Applications of Scanning Tunneling Microscopy, Erice, Italy, 1989.
    [230] D. A. Bonnell, Scanning probe microscopy and spectroscopy : theory, techniques, and applications, Wiley-VCH, New York, 2001.
    [231] H. Neddermeyer, Scanning tunneling microscopy, Kluwer Academic Publishers, Dordrecht ; Boston, 1993.
    [232] M. Thompson, M. D. Baker, A. Christie, J. F. Tyson, Auger electron spectroscopy, Wiley, New York, 1985.
    [233] J. B. Pendry, Low energy electron diffraction : the theory and its application to determination of surface structure, Academic Press, London; New York, 1974.
    [234] O. Madelung, Physics of III-V Compounds. Wiley, New York, 1964.
    [235] J.S. Blakemore, Solid state physics, W. B. Saunders Co., Philadelphia, 1969.
    [236] X.L. Huang, A. Tomaszewska, C.H. Chou, C.Y. Hsu, C.L. Lin, T.Y. Fu, J. Nanopart. Res. (submitted)
    [237] D.A. Muzychenko, K. Schouteden, M. Houssa, S.V. Savinov, C. Van Haesendonck, Phys. Rev. B 85 (2012) 125412.
    [238] X.L. Huang, C.L. Lin, A. Tomaszewska, C.R. Chen, T.Y. Fu, Nanoscale Res. Lett. 7 (2012) 189.
    [239] F. Ming, K. Wang, X. Zhang, J. Liu, A. Zhao, J. Yang, X. Xiao, J. Phys. Chem. C 115 (2011) 3847.
    [240] X.L. Huang, A. Tomaszewska, C.L. Lin, S.L. Tsay, C.H. Chou, T.Y. Fu, Thin Solid Films 520 5304 (2012).
    [241] M.V. Rastei, B. Heinrich, L. Limot, P.A. Ignatiev, V.S. Stepanyuk, P. Bruno, J.P. Bucher, Phys. Rev. Lett. 99 (2007) 246102.
    [242] V.S. Stepanyuk, D.I. Bazhanov, A.N. Baranov, W. Hergert, P.H. Dederichs, J. Kirschner, Phys. Rev. B 62 (2000) 15398.
    [243] L. Zhu, X. Zhen, Acta Mech. 213 (2010) 223.
    [244] J. Tersoff, R.M. Tromp, Phys. Rev. Lett. 70 (1993) 2782.
    [245] A. Li, F. Liu, M.G. Lagally, Phys. Rev. Lett. 85 (2000) 1922.
    [246] H.J.W. Zandvliet, R. van Gastel, Phys. Rev. Lett. 99 (2007) 136103.
    [247] J. Colin, Surf. Sci. 606 (2012) 825.
    [248] X.L. Huang, C.H. Chou, C.L. Lin, A. Tomaszewska, T.Y. Fu, Thin Solid Films 519 (2010) 8410.
    [249] D.J. Spence, S.P. Tear, Appl. Phys. A 67 (1998) 585.
    [250] L.W. Chou,H.C.Wu,Y.R. Lee, J.C. Jiang, C. Su, J.C. Lin, J.Chem. Phys. 131 (2009) 224705.
    [251] R.M. Feenstra, G. Meyer, K.H. Rieder, Phys. Rev. B 69 (2004) 081309.
    [252] R.M. Feenstra, S. Gaan, G. Meyer, K.H. Rieder, Phys. Rev. B 71 (2005) 125316
    [253] R.M. Feenstra, J.Y. Lee, M.H. Kang, G. Meyer, K.H. Rieder, Phys. Rev. B 73 (2006) 035310.
    [254] I. Matsuda, M. Ueno, T. Hirahara, R. Hobara, H. Morikawa, C. Liu, S. Hasegawa, Phys. Rev. Lett. 93 (2004) 236801.
    [255] N. Nilius, S.M. Kozlov, J.F. Jerratsch, M. Baron, X. Shao, F.S. Shaikhutdinov, .M. Neyman, H.J. Freund, ACS Nano. 6 (2012) 1126.

    下載圖示
    QR CODE