Basic Search / Detailed Display

Author: 張堯棊
Chang, Yao-Chi
Thesis Title: 球墨鑄鐵與不銹鋼摩擦攪拌點銲接合性質之研究
A study on the joining properties of ductile iron and stainless steel by friction stir spot welding
Advisor: 程金保
Cheng, Chin-Pao
Degree: 碩士
Master
Department: 工業教育學系
Department of Industrial Education
Thesis Publication Year: 2012
Academic Year: 100
Number of pages: 76
Keywords (in Chinese): 摩擦攪拌點銲球墨鑄鐵SUS304不銹鋼SUS444不銹鋼
Keywords (in English): Friction stir spot welding, Ductile iron, SUS304 stainless steel, SUS444 stainless steel
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 155Downloads: 1
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 摩擦攪拌點銲是摩擦攪拌銲接所衍生的另一種固態接合技術,其製程溫度皆於母材熔點以下,可避免因熔化而產生的缺陷,適合異質材質或是難銲材料之接合。球狀石墨鑄鐵由於機械性質優良、鑄造性良好且價格低廉,所以在許多工程結構件上已被廣泛使用。肥粒鐵系不銹鋼因為其抗蝕性比麻田散鐵與沃斯田鐵系不鏽鋼更加優越,常被應用在一些腐蝕嚴重的環境中。本研究利用1615 rpm的主軸轉速,在10-240秒的持溫時間下,探討SUS 444不銹鋼、球墨鑄鐵、SUS 304不銹鋼三種異質材料之試片,經摩擦攪拌點銲搭接接合後之微觀組織與機械性質之影響。
      實驗結果顯示,透過本研究設計的參數能使不銹鋼與球墨鑄鐵板材產生接合,攪拌時間愈長,接合效果愈明顯,在進給邊成功接合的區域比退出邊大。此外,在攪拌接合區域未發現因重熔凝固所產生的碳化物,然而,由於攪拌所產生的熱及外力作用,不銹鋼產生晶粒細化現象,而球墨鑄鐵部份則在攪拌區形成麻田散鐵組織,而熱機影響區則為類似變韌鐵組織。而越靠近攪拌區由於晶粒細化的作用,其微硬度值也有明顯提升。拉伸試驗結果顯示保持時間越長,其接合強度越好,尤其同材質之接合優於異質接合。

    Friction stir spot welding is another solid-statebonding technique deri- ved from friction stir welding, the process temperature which is below the melting point of the base material can be avoided defects resulting from melting, it is suitable for joining dissimilar materials and difficu- lt materials. Ductile iron has been widely used in many engineering structures, due to excellent mechanical properties, good casting and low-cost. Ferrite stainless steels have been used in some severe corrosion environment for its corrosion resistance which is mo- re superior than Martensitic stainless steel and austenitic stainless steel. In this study, the effect for microstructure and mechanical properties of SUS 304 stainless steel, SUS444 stainless steel and cast iron joining by friction stir spot welding with 1615 rpm spindle speed and 10-240 seconds hold time was investigate.
    The experimental results show that the parameters design in this study can produce stainless steel and cast iron plates joining together,. The stirring time is longer, bonding success area in the advancing side is larger than the retreating side. In addition, cementite structure generated by remelting and solidifying has not been found in the joints. Furthermore, the phenomenon of grain refinement has been observed in the stainless steel, due to the heat and external force produced by stirring. On the other hand, martensite structure appeared in the stir zone of ductile iron and bainite structure appeared in the thermo-mechanical affected zone, resulting in the increase of microhardness. Tensile test results present that the holding time is longer, the bonding strength is better, especially joint the same material material is superior to bonding dissimilar material.

    目 錄 中文摘要........................I 英文摘要.......................II 目錄.........................IV 表目錄...................................VII 圖目錄.........................VIII 第一章 緒論.................1 1-1 前言.......................1 1-1 研究動機與目的....................2 第二章 文獻探討.......................4 2-1 摩擦攪拌點銲......................4 2-1-1摩擦攪拌點銲之簡介與原理...................4 2-1-2 摩擦攪拌銲接之製程.....................4 2-1-3 摩擦攪拌銲接之優點......................5 2-1-4 摩擦攪拌銲接銲道流動行為....................6 2-1-5 摩擦攪拌銲接銲道橫截面區域之金相觀察................................6 2-1-6 摩擦攪拌銲接可控制變化之主要參數....................................7 2-1-7摩擦攪拌點銲之相關研究................8 2-2 再結晶之特性.............11 2-3 球墨鑄鐵簡介.................12 2-4 球墨鑄鐵之再結晶行為..........12 2-5 肥粒鐵不銹鋼..................15 2-5-1肥粒鐵不銹鋼脆性現象........................15 2-6 肥粒鐵不銹鋼銲接性.................19 第三章 研究方法與步驟............20 3-1 實驗流程設計.................20 3-2 實驗前置作業.....................22 3-2-1實驗材料.................22 3-2-2 銲接設備........22 3-2-3 攪拌桿設計.............23 3-2-4 銲接參數設定..................23 3-3 金相顯微組織觀察................26 3-4 微硬度試驗..........................26 3-5 TSFL試驗......................27 3-6 SEM顯微觀察.....................29 第四章 實驗結果與討論.................30 4-1 SUS444不銹鋼與球墨鑄鐵.................30 4-1-1點銲微觀組織觀察...............30 4-1-2微硬度試驗............32 4-1-3 TSFL試驗...........32 4-1-4 SEM試驗.............33 4-2 SUS304不銹鋼與球墨鑄鐵.............41 4-2-1點銲微觀組織觀察...........41 4-2-2微硬度試驗................42 4-2-3 TSFL試驗.......43 4-2-4 SEM試驗.............43 4-3 SUS304不銹鋼與SUS304不銹鋼..................................................50 4-3-1點銲微觀組織觀察..........................................................50 4-3-2微硬度試驗………….......................................................50 4-3-3 TSFL試驗.....................................................................51 4-3-4 SEM試驗.........................................................................51 4-4 SUS444不銹鋼與SUS304不銹鋼..................................................59 4-4-1點銲微觀組織觀察..........................................................59 4-4-2微硬度試驗..........................59 4-4-3 TSFL試驗.........60 4-4-4 SEM試驗............60 第五章 結論................68 5-1 SUS444不銹鋼與球墨鑄鐵........................................68 5-2 SUS304不銹鋼與球墨鑄鐵........................................68 5-3 SUS304不銹鋼與SUS304不銹鋼.............................69 5-4 SUS444不銹鋼與SUS304不銹鋼.............................69 第六章 參考文獻..........71 表 目 錄 表2-1 拉伸溫度及應變速率對矽含量3.9wt%之球墨鑄鐵再結晶發生的影響(true strain = 0.6~0.7)…...........................................................14 表2-2成份與微結構對高溫脆化的影響..................................................18 表3-1三種實驗材料化學成分表(wt%).................................................... 23 表3-2銲接參數設定………………………...............................................25 圖 目 錄 圖2-1 摩擦攪拌銲接製程之示意圖................................9 圖2-2 銲點橫截面進給邊與退出邊示意圖.........................9 圖2-3 摩擦攪拌銲接擠塑區的材料流動模型.....................10 圖2-4 FSSW銲道橫截面顯微結構示意圖....................10 圖2-5 不同矽含量砂模鑄造試片拉伸性質與溫度之依存性:(a) 5%應變量之流應力;(b)延伸率,應變速率為3.3×10-3s-1..13 圖2-6 球墨鑄鐵在最高加熱溫度800 ℃之熱循環過程時肥粒 鐵基地產生再結晶.................................................14 圖2-7 鉻含量與時間對σ相成形相對關係圖........................17 圖2-8 不同氮與碳含量對材料韌性的影響(a)815℃(1500℉)/1hr/WQ and (b)1150℃(2100℉) /1hr/WQ...........................18 圖2-9 一些商業用鋼利用Varestraint test 銲接凝固裂縫敏感度.........................................................19 圖3-1 實驗流程圖.................................................21 圖3-2 試片示意圖:(a)2mm;(b)3mm…......................24 圖3-3 球狀石墨鑄鐵(左)、SUS304不銹鋼(中)與SUS444不銹鋼 (右)之BM區金相組織圖......................................24 圖3-4 實驗用床台立式銑床………...............................25 圖3-5 攪拌桿形狀尺寸圖............................................25 圖3-6 Future-Tech FM-700 型微硬度試驗機…...........27 圖3-7 試片硬度取點示意圖........................................27 圖3-8 試片經FSSW點銲外觀圖...............................28 圖3-9 國產58503型萬能材料試驗機..........................28 圖3-10 拉伸試片示意圖...............................................28 圖3-11 JEOL JSM6360電子顯微鏡.........................29 圖4-1 FSSW試片橫截面巨觀圖.............................34 圖4-2 SUS444不銹鋼與球墨鑄鐵在不同時間參數下接合之 銲點型態: (a)10秒; (b)30秒; (c)60秒; (d)90秒.......35 圖4-3 SUS444不銹鋼與球墨鑄鐵接合之不同區域微觀組 織.........................................................................36 圖4-4 SUS444不銹鋼與球墨鑄鐵在不同時間參數下接合 之微硬度分佈:(a)10秒;(b)60秒;(b)90秒............................38 圖4-5 SUS444不銹鋼與球墨鑄鐵在不同時間參數下接合 之強度與破斷面型態..................................…....................39 圖4-6 SUS444不銹鋼與球墨鑄鐵經不同時間結合後之拉伸 破斷面顯微組織.....................................................40 圖4-7 SUS304不銹鋼與球墨鑄鐵在不同時間參數下接合 之銲點型態: (a)120秒; (b)180秒; (c)240秒..................................................….......44 圖4-8 SUS304不銹鋼與球墨鑄鐵接合之不同區域微觀組 織...............................................................45 圖4-9 SUS304不銹鋼與球墨鑄鐵在不同時間參數下接合之 微硬度分佈:(a)120秒;(b)180秒;(b)240秒。..................................................….......45 圖4-10 SUS304不銹鋼與球墨鑄鐵在不同時間參數下接合之強度 與破斷面型態.....................................................48 圖4-11 SUS304不銹鋼與球墨鑄鐵經不同時間結合後之拉伸破斷面 顯微組織................................................................49 圖4-12 SUS304不銹鋼與SUS304不銹鋼在不同時間參數下接合 之銲點型態: (a)10秒; (b)30秒; (c)60秒; (c)90秒。....52 圖4-13 SUS304不銹鋼與SUS304不銹鋼接合之不同區域微觀 組織.................................................................................53 圖4-14 SUS304不銹鋼與SUS304不銹鋼在不同時間參數下 接合之微硬度分佈:(a)10秒;(b)30秒;(c)60秒;(c)90秒。...55 圖4-15 SUS304不銹鋼與SUS304不銹鋼在不同時間參數下接合 之強度與破斷面型態..............................................................57 圖4-16 SUS304不銹鋼與SUS304不銹鋼經不同時間結合後之拉伸 破斷面顯微組織................................................................58 圖4-17 SUS444不銹鋼與SUS304不銹鋼在不同時間參數下接合 之銲點型態:(a)10秒; (b)30秒; (c)60秒; (c)90秒。...61 圖4-18 SUS444不銹鋼與SUS304不銹鋼接合之不同區域微觀組織....................................................................................62 圖4-19 SUS444不銹鋼與SUS304不銹鋼在不同時間參數下接合 之微硬度分佈:(a)10秒;(b)30秒;(c)60秒;(c)90秒。..…64 圖4-20 SUS444不銹鋼與SUS304不銹鋼在不同時間參數下接合之 強度與破斷面型態...................................................66 圖4-21 SUS444不銹鋼與SUS304不銹鋼經不同時間結合後之拉伸 破斷面顯微組織...............................................67

    [1] R.S. Mishra, Z.Y. Ma. (2007). Friction stir welding and processing. ASM International.
    [2] D.A. Wang, S.C. Lee. (2007). Microstructure and failure mechanisms of friction stir spot welds of aluminum 6061-T6 sheets. Journal of Materials Processing Technology, Vol.186, 291-297.
    [3] S.G. Arul, T. Pan, P.C. Lin, J. Pan, Z. Feng, M.L. Santella. (2005). Microstructures and failure mechanisms of spot friction welds in lap-shear specimens of aluminum 5754 sheets. SAE Technical Paper no. 2005-01-1256, Society of Automotive Engineering, Warrendale, PA.
    [4] 秦紅珊、楊新岐。(2006)。一種替代傳統電阻點焊的創新技術-摩擦攪拌點焊。電焊機,36(7),27-30。
    [5] R.S. Mishra, Z.Y. Ma. (2005). Friction stir welding and processing. Materials Science and Engineering, R 50, 1-78.
    [6] S. Lathabai, M. J. Painter, G.M.D Cantin, V. K. Tyagi. (2006). Friction spot joining of an extruded Al-Mg-Si alloy. Scripta Materialia, Vol.55, 899-902.
    [7] H. Yamamoto, K. Tamura, M. Onozawa. (1998). Defect evaluation in diffusion bonding interface of dissimilar metals by ultrasonic pulse echo methods. J. Jpn. Foundry Eng. Soc., vol. 70, pp. 866-872.
    [8] T. Ogata, K. Kojoh and H. Nagayoshi. (1998). Relation between tensile characteristics and microstructure of joint in friction welded ductile cast iron. J. Jpn. Foundry Eng. Soc., vol. 70, pp. 873-879.
    [9] S. Hiratsuka, H. Herie , M. Nakamura, T. Kowata, M. Aonuma and T. Kobayashi. (1998). TIG welding of spheroidal graphite cast iron and mild steel using inoculant coated welding rods. J. Jpn. Foundry Eng. Soc., vol. 70, pp. 860-865.
    [10] J. D. Mullins. (1992). Ductile Iron Handbook. American Foundrymen’s Society, Inc., Des Plaines, Illinois.

    [11] X. Wang, H. Ishii, K. Sato. (2003). Fatigue and microstructure of welded joints of metal sheets for automotive exhaust system. JSAE Rev, 24, pp. 295-301.
    [12] N. Fujita, K. Ohmura, A. Yamamoto. (2003). Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels. Mater Sci Eng A, 351, pp. 81-272.
    [13] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano and M. Inagaki. (2004). Corrosion resistance of friction stir welded 304 stainless steel. Scripta Materialia, Vol.51, pp. 101-105.
    [14] E. Folkhard. (1988). Welding metallurgy of stainless steels. New York:Spring- Verlag Wien.
    [15] K. V. Jata, M. W. Mahoney, R. S. Mishra, S. L. Semiatin, and T. Lienert. (2003). Friction Stir Welding and Processing II. 2003 TMS Annual Meeting San Diego, Galifornia March 2-6.
    [16] 王盛昌。(民90)。電阻點銲過程中動態電阻與熱流之模擬(博士論文)。國立中山大學機械工程研究所。
    [17] 山本元道,Peter Su,Adrian Gerlich,Thomas H. North,篠崎賢二。(2007)。マグネシウム合金AZ91 摩擦撹拌スポット溶接部における液膜侵入 誘起割れ(LPI cracking)。日本溶接学会論文集,第25 巻,第1号,第208-214頁。
    [18] 日本川崎重工業(株) : http://www.khi.co.jp/robot/
    [19] Y. Hovanski,a, M.L. Santellab and G.J. Granta. (2007). Friction stir spot welding of hot-stamped boron steel. Scripta Materialia ,Vol. 57, pp. 873–876.
    [20]植松美彦,戸梶惠郎,戸崎康成,栗田達夫,村田瞬亮。(2008)。Al-Mg-Si系合金摩擦攪拌スポット接合継手の疲労挙動に及ぼす後熱処理の響。日本溶接学会論文集,第26 巻,第1号,第7-14頁。
    [21] J. A. Schneider, and A. C. Nunes. (2003). Thermo-Mechanical Processing in Friction Stir Welds. 2003 TMS Annual Meeting San Diego, Galifornia March 2-6, pp.43-51.
    [22] 卓駿宇,摩擦攪拌點銲5052 鋁合金破壞荷重之韋伯解析。國立成功大學材料科學與工程學系,96學年度碩士論文。
    [23] 藤本光生,古賀信次,阿倍奈津美,佐藤裕,粉川博之。2007。摩擦攪拌点接合で得られた6061 アルミニウム合金攪拌領域の組織学的検討,日本溶接学会論文集,第25 巻,第4号,第553-559頁。
    [24] G. J. Fernandez, and L. E. Murr. (2004). Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359 + 20% silicon carbide metal-matrix composite. Materials Characterization 52, pp.65-75.
    [25] Bilici MK, Yukler AI, KurtulmuÅŸ M. (2011). The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mat Des. 32. pp.4074-4079.
    [26] Q. Yang, S. Mironov, Y.S. Sato, K. Okamoto, (2010). Material flow during friction stir spot welding. Mater Sci Eng A. 527. pp.4389-4398
    [27] William D. Callister, J. R. 著,陳文照,曾春風,游信和。(民 88)。材料科學工程。高立圖書有限公司。
    [28] F. J. Humphreys, and M. Hatherly. (1995). Recrystallization and Related Annealing Phenomena. Pergamon, ISBN0-08-041884-8. 497 pp. +xxi.
    [29] C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling, and C.C. Bampton. (1997). Effects of Friction Stir Welding on Microstructure of 7075 Aluminum. Scripta Mater, Vol. 36, No. 1, pp.69-75.
    [30] 陳思達。(民93)。摩擦攪拌銲接對Al-Cu系2218合金微觀組織變化之效應(碩士論文)。國立成功大學材料科學及工程學系。
    [31] 張榮洲。(民93)。抽線道次對銅伸線機械性質的影響(碩士論文)。國立成功大學機械工程學系。
    [32] 李信委。AZ31B鎂合金室溫至500℃之拉伸性質與其變形組織探討。國立成功大學材料科學及工程學系,91學年度碩士論文。
    [33] Michael F. Burditt. Ductile Iron Handbook. American Foundrymen’s Society, Inc, Des Plaines, Illinois, U. S. A. , pp.1-2..
    [34] 程金保。(民88)。肥粒體基球墨鑄鐵共析變態溫度附近以下之熱疲勞龜裂性質探討(博士論文)。國立成功大學材料科學及工程學系。
    [35] 陳正中。(民92)。沃斯回火球墨鑄鐵疲勞性質之研究(碩士論文)。國立台灣師範大學工業教育學系
    [36] E. Hucke, and H. Udin. (1953). Welding Metallurgy of Nodular Cast Iron. Welding J, pp.378-s~385-s.
    [37] G. R. Pease, (1960, January). The Welding of Ductile Iron. Welding J, pp. 1-9.
    [38] R. C. Voigt and C. R. Loper, JR. (1983). A Study of Heat-Affected Zone Structures in Ductile Cast Iron. Welding J, pp.82-88.
    [39] E. M. El-Banna, (1999). Effect of Preheat on Welding of Ductile Cast Iron, Materials Letters. Vol. 41, pp.20-26.
    [40] Minoru Hatate, Toshio Shiota, Nobuyuki Abe, Masaharu Amano, and Toshio Tanaka. (2004). Bonding Characteristics of Spheroidal Graphite Cast Iron and Mild Steel Using Electron Beam Welding Process. Vacuum 73, pp.667-671.
    [41] C. P. Cheng, T. S. Lui, and L. H. Chen. (1995). A Study of the 500℃ to 900℃ Tensile Deformation Behaviour of Spheroidal Graphite Cast Iron. Cast Metals , Vol. 8, No. 4, pp.211-216.
    [42] C. P. Cheng, T. S. Lui, and L. H. Chen. (2004). Effect of Heating Temperature and Magnesium Content on Thermal Cyclic Failure Behaviour of Ductile Irons. Materials Science and Technology, Vol. 20, pp.243-250.
    [43] H. Thielsch. (1951). Physical and welding metallurgy of chromium stainless, Welding Journal, 30, pp. 209s-250s.
    [44] J. J. Demo. (1977). Structure and constitution of wrought ferritic stainless steels. in Handbook of Stainless Steels, D. Peckner and I. M. Bernstein, eds., McGraw-Hill, New York.
    [45] F. J. Shprtsleeve, and M. E. Nicholson. (1951). Transformations in ferritic chromium steels between 1100 and 1500℉ (595 and 815℃). Trans.ASM, pp. 142-156.
    [46] H. Kiesheyer, and H. Brandis,. (1977). Ausscheidungs-und Versprödungsverhalten nickel-haltiger Superferritic (Precipitation and embrittlement of nickel containing Superferites). Zeitßchrift für Werkstoffech, 8, pp.69-77.

    [47] E. Baserlecken, W. Fischer, and K. Lorenz. (1961). Investigations concerning the transformation behavior, the botched impact toughness and the susceptibility to intergranular corrosion of iron-chromiun alloys with chromium contents to30%. Stahl und Eisen, 81, pp.768.
    [48]M. Semchysen, A. P. Bond, and H.J. Dundas. (1971). Effects of composition on ductility and toughness of ferritic stainless steels. in Proceedings of the Symposium Toward Improved Ductility and Toughness, Kyoto, Japan, pp. 239.
    [49] R. N. Wrigh. (1980). Toughness of ferritic stainless, in Toughness of Ferritic Stainless Steels. ASTM STP 706, R. A. Lula, ed, American Society for Testing and Materials, West Conshohocken, pp. 2-33.
    [50] J. C. Villafuerte, E. Pardo and H. W. Kerr. (1990). The effect of alloy composition and welding conditions on columnar-equiaxed transitions in ferritic stainless steel gas-tungsten arc welds. Metallurgical and Materials Transactions A. 21. pp. 2009-2019.
    [51] Y. Nishio, T. Ohmae, Y. Yoshida, and A. Miura. (1971). Weld cracking and mechanical properties of 17% chromium steel weldment, welding Journal, 50, pp. 9s-18s.
    [52]D. H. Kah, D. W. Dickinson. (1981). Weldability of ferritic stainless steels, Welding Journal, 60. pp. 135s-142s.
    [53]S. DeRosa, M. H. Jacobs, D. G. Jones, and C. Sherhod. (1979). Studies of TIG weld pool solidification and weld bend microstructure in stainless steel tubes. in Solidification and Casting of Metals. Metals Society, London, pp. 416.
    [54] J. M. Sawhill, , A. P. Jr. (1976). Ductility and toughness of stainless steel welds. Welding Journal, 55, pp. 33s-41s.
    [55] C.P. Cheng, H.M. Lin, J.C. Lin. (2010). Friction stir welding of ductile iron and low carbon steel. Sci. Technol. Weld. Join. Vol. 15, No. 8, 706 – 711.
    [56] 林宏茂。(民93)。肥粒鐵基球墨鑄鐵熱循環誘發延晶脆性破壞之探討(博士論文)。國立成功大學材料科學及工程學系。
    [57] 林冠廷。(民98)。銅鉬合金化沃斯回火之球墨鑄研究鐵顯微組織與特性(碩士論文)。大同大學工程材料研究所。

    下載圖示
    QR CODE