Author: |
張志宏 Chang, Chih-Hung |
---|---|
Thesis Title: |
應用於微電網之電能管理策略 Designs of Power Management Strategy for Microgrid Application |
Advisor: |
陳瑄易
Chen, Syuan-Yi |
Degree: |
碩士 Master |
Department: |
電機工程學系 Department of Electrical Engineering |
Thesis Publication Year: | 2020 |
Academic Year: | 108 |
Language: | 中文 |
Number of pages: | 109 |
Keywords (in Chinese): | 能量管理策略 、微電網 、最小等效能耗策略 、適應性人工蜂群演算法 |
Keywords (in English): | Energy Management System, microgrid, Equivalent Consumption Minimization Strategy, Adaptive Artificial Bee Colony Algorithm |
DOI URL: | http://doi.org/10.6345/NTNU202001482 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 101 Downloads: 23 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
本研究之目標為針對智慧家庭,發展整合太陽能發電、市電及儲能系統之微電網系統,透過設計多能源系統最佳化能量管理技術(Energy Management System, EMS),適當調度各電源之間之功率流向,並對儲能系統進行必要之儲能與釋能,以降低整體用電成本。在此研究中,首先發展基於規則控制策略(Rule-Based Control Strategy, RBCS )於微電網系統中,以達到節省電能消耗、降低碳排放量與減少用戶電費支出等目的。然而,由於實際微電網系統在運作時,家用負載、太陽能發電功率、儲電量與即時電價等各項數值均會隨時間變化而縝密變動,且RBCS之切換條件無法兼顧所有可能性。因此,為提高整體用電成本最小化之目標,本研究進一步以最小等效能耗策略(Equivalent Consumption Minimization Strategy, ECMS) 設計多能源之電能管理策略,因應不同再生能源發電量、即時電價與負載需求進行功率分配最佳化,將能源更有效率地使用,進而達到電價最小化之目標。礙於最小等效能耗策略搜尋時間過於冗長,最終提出適應性人工蜂群演算法(Adaptive Artificial Bee Colony Algorithm, AABC)設計多能源之電能管理策略來降低搜索時間,實驗結果表明以月計電費夏日時段為例,使用AABC之控制策略比RBCS之控制策略能省下9.8%的電費;使用ECMS之控制策略比RBCS之控制策略一個月能省下11.2%的電費。
In the light of this, the objective of this thesis is to develop a smart home which is based on photovoltaic, mains supply and battery in three kinds of microgrid. This thesis presents a Rule-Based Control Strategy (RBCS) to conserve electricity and reduce carbon emissions of Home Energy Management System (HEMS). Nevertheless, considering about the real load, solar power and electricity rates situation will be different with estimation. Consequently, the objective is to minimize electricity payment when satisfying conditions. Further more, the standard way to solve this kind of problem is Equivalent Consumption Minimization Strategy (ECMS) and Adaptive Artificial Bee Colony Algorithm (AABC).Simulation result demonstrate RBCS electricity rates is 9.8% worth more than EMS(AABC) for a month. Then RBCS electricity rates is 11.2% worth more than EMS (ECMS) for a month.
[1]美國國家航空暨太空總部,取自於https://reurl.cc/0z0LpK
[2]經濟部統計處資料,取自於 https://reurl.cc/lLr8o9
[3]R. H. Lasseter, “Microgrid Power Engineering Society Winter Meet,” Conference Proceedings, vol. 1, pp. 305-308, 2002.
[4]R. H. Lasseter and P. Paigi, “Microgrid A Conceptual Solution,” Power Electronics Specialists Conference, vol. 6, 2004.
[5]J. P. Barton and D. G. Infield, ”Energy Storage and Its Use with Intermittent Renewable Energy,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 441-448, 2004.
[6]P. Li, “Energy Storage is the core of Renewable Technologies,” IEEE Nanotechnology Magazine, vol. 2, no. 4, pp. 13-18, 2008.
[7]S. Jiang, D. Cao, Y. Li and F. Zheng Peng, “Grid-Connected Boost-Half-Bridge Photovoltaic Micro Inverter System Using Repetitive Current Control and Maximum Power Point Tracking,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4711-4722, 2012.
[8]K. Watanabe, A.Kawashima and T. Hayashida, “Buck/boost DC/DC converters using nMOSFETs,” Electronics Letters, vol. 31, no. 12, pp. 933-934, 1995.
[9]J. Selvaraj, N. A. Rahim and C. Krismadinata, “Digital PI Current control for grid connected PV inverter,” IEEE Conference on Industrial Electronics and Applications, 2008.
[10]M. F. N. Tajuddin, N. A. Rahim, I. Daut, “Design and implementation of a DSP based digital controller for a dc-dc converter,” Computer and Electrical Engineering, vol. 1, 2009.
[11]S. C. Tan, Y. M. Lai, C. K. Tse and M. K. H. Cheung, ”A fixed-frequency pulse width modulation based quasi-sliding-mode controller for buck converter,” IEEE Transactions on Power Electronics, vol. 20, no. 6, pp. 1379-1392, 2005.
[12]A. Abrishamifar, A. A. Ahmad and S. Elahian, “Fixed frequency sliding mode controller for the buck converter,” Power Electronics, Drive Systems and Technologies Conference, 2011.
[13]S. C. Tan, Y. M. Lai, M. K. H. Cheung and C. K. Tse, “On the practical design of a sliding mode voltage controlled buck converter,” IEEE Transactions on Power Electronics, vol. 20 no. 2, pp. 425-437, 2005.
[14]Y. Y. Tzou and S. L. Jung, “Full control of a PWM dc-dc converter for ac voltage regulation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 4, pp. 1218-1226, 1998.
[15]H. Kanchev, D. Lu, F. Colas, V. Lazarov and B. Francois, “Energy Management and Operational Planning of a Microgrid With a PV-Based Active Generator for Smart Grid Applications,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4583-4592, 2011.
[16]林政廷,「資通訊技術於節約能源領域之應用」,2012年3月25日。
[17]IEEE1888工作組,IEEE1888智慧能源標準及開發指南,北京:人民由電出版社。2014。
[18]楊宏澤,「智慧家庭技術發展現況與研究重點」,2012年3月28日。
[19]S. G. Wirasingha and A. Emaadi, “Classification and Review of Control Strategies for Plug-In Hybrid Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 111-122, 2011.
[20]E. Silvas, T. Hofman, N. Murgovski, L. F. P. Etman and M. Steinbuch, “Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol. 66, no. 1, pp. 57-70, 2017.
[21]P. Zhang, F. Yan and C. Du, “A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics,” Renewable and Sustainable Energy Reviews, vol. 48, pp. 104, 2015.
[22]Z. K. Ali, S. L. Badjate and R. V. Kshirsagar, “Review on Energy Management System for Hybrid Vehicle,” International Journal of Science Technology & Engineering, vol. 2, no. 12, 2016.
[23]A. Ahmet, E. Koray, Ö. Sule and Ö. Engin, “Dynamic energy management for photovoltaic power system including hybrid energy storage in smart grid applications,” Energy, vol. 162, pp. 72-82, 2018.
[24]A. Parwal, M. Fregelius, I. D. Temiz, M. Göteman, J. G. D. Oliveira, C. Boström and M. Leijon, “Energy management for a grid-connected wave energy park through a hybrid energy storage system,” Applied Energy, vol. 231, pp. 399-411, 2018.
[25]F. A. Qayyum, M. Naeem, A. S. Khwaja, A. Anpalagan, L. Guan and B. Venkatesh “Appliance Scheduling Optimization in Smart Home Networks,” IEEE Access, vol. 3, pp. 2176-2190. 2015.
[26]D. Karaboga, An idea based on honey bee swarm for numerical optimization, technical report, University of Erciyes, 2005.
[27]H. Narasimha, “Parallel artificial bee colony (PABC) algorithm,” World Congress on Nature and Biologically Inspired Computing, Coimbatore, pp. 306-311, 2009.
[28]Y. Cheng, “Modified ABC Algorithm in Virus Evolution,” 2016 International Symposium on Computer, Consumer and Control,” pp. 805-808, 2016.
[29]陳毅,運用差分策略改良人工蜂群演算法於高維度問題,碩士論文,中原大學資訊管理學系,桃園,2011。
[30]W. P. Lee, C. W. Chien and W. T. Cai,“Improving the performance of differential evolution algorithm with modified mutation factor,” Journal of Advanced Engineering, vol. 6, no. 4, pp.255-261, 2011.
[31]Pierluigi Pisu and Giorgio Rizzoni, “A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 506-518, 2007.
[32]O. Dingel, N. Pini, I. Trivic, J. Ross, N. Cavina, A. Cerofolini and M. Rioli, “Benchmarking Hybrid Concepts:On-line vs. Off-line Fuel Economy Optimization for Different Hybrid Architectures” SAE International, vol. 2, no. 3, pp. 456-470, 2013.
[33]Z. Yuan, L. Teng , S. Fengchun and H. Peng, “Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle,” Energies, vol. 6, no. 4, pp. 1-14, 2013
[34]D. Sinoquet, G. Rousseau and Y. Milhau, “Design optimization and optimal control for hybrid vehicle,” Optimization and Engineering, vol. 12, pp. 199-213, 2011.
[35]D. Pei and M. Leamy, “Design Programming-Informed Equivalent Cost Minimization Control Strategies for Hybrid-Electric Vehicle” Journal of Dynamic Systems Measurement and Control, 2013.
[36]I. M. Horowitz, Synthesis of Feedback Systems, Academic Press, 1963.
[37]J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the ASME, vol. 64, pp. 759-768, 1942.
[38]D. Lenden and T. B. Reddy, Hand Book of battery, Third Edition, chapter35. 2002.
[39]劉文懋,「雙向升降式電池電源模組串聯之雙向電量平衡電路」,碩士論文,國立臺灣海洋大學,基隆,2012
[40]J. Garche and A. Jossen, “Battery management systems (BMS) for increasing battery life time,” TELESCON 2000. Third International Telecommunications Energy Special Conference, 2000.
[41]D. Andrea, Battery management systems for Large Lithium-Low Battery Packs, Artech House, 2010.
[42]Innovative Battery Technology, from https://is.gd/RnM7zp
[43]S. Y. Chen, B. C. Yang, T. A. Pu, C. H. Chang and R. C. Lin, “Active Current Sharing of a Parallel DC-DC Converters System Using Bat Algorithm Optimized Two-DOF PID Control,” IEEE Access, vol. 7, pp. 84757-84769, 2019.
[44]X. F. Wang, M. Wu, L. OuYang and Q. Tang, “The Application of GA-PID Control Algorithm to DC-DC Converter,” Proceedings of the 29th Chinese Control Conference, pp. 3492-3496, 2010.
[45]吳財福、陳裕愷、張健軒、太陽能光電能供電與照明系統綜論第二版。全華圖書,2007
[46]林原立,「粒子群式太陽能最大功率追蹤轉換器之研製」,碩士論文,國立彰化師範大學,2008年。
[47]蔡文傑,「太陽能系統最大功率追蹤器之調變型擾動觀察法研製」,碩士論文,國立彰化師範大學,2010年。
[48]台灣電力公司電價表,取自於 https://reurl.cc/b681xr
[49]李鎧麟,「人工蜂群演算法應用於三電力電動車系統之最佳能量管理策略」,碩士論文,國立臺灣師範大學,2018年。
[50]卜擇安,布穀鳥演算法應用於混合燃料電池電動機車之最佳能量管理,國立臺灣師範大學電機工程學系,臺北,2019
[51] S. Onori, L. Serrao and G. Rizzoni, Hybrid Electric Vehicles: Energy Management Strategies, Springer London, 2016.
[52]李維平、李元傑、謝明勳,「以群中心略改良人工蜂群演算法」,資訊管理學報,第二十一卷,第一期,2014,第25-44頁。
[53]PSIM User’s Guide, Powersim Inc, 2016
[54]SimCoder User’s Guide, Powersim Inc, 2015
[55]張卿杰,徐友,左楠,卞康君,手把手教你學DSP:基於TMS320F28335,北京航空航天大學出版社,2015。
[56]固緯電子實業股份有限公司,PEK-120使用手冊,臺北,2016。
[57]Texas Instruments Inc., “TMS320F2833x, TMS320F2823x Digital Signal Controllers(DSCs), rev B”, 2016
[58]詹傑民,「含電動車負載之配合電系統運輸規劃」,碩士論文,國立中山大學,2012年。