Basic Search / Detailed Display

Author: 李晏誠
Yen-Cheng Li
Thesis Title: 毛細管電泳-不均勻電場效應輔助線上掃集法/紫光LED誘導螢光偵測法對尿液中多巴胺及正腎上腺素之分析研究
Unequal Electric Field Assisted Sweeping-MEKC for the Determination of Dopamine and Norepinephrine in Urine by Violet Light Emitting Diode-Induced Fluorescence Detection
Advisor: 林震煌
Lin, Cheng-Huang
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2005
Academic Year: 93
Language: 中文
Number of pages: 85
Keywords (in Chinese): 毛細管電泳多巴胺線上濃縮技術
Keywords (in English): capillary electrophoresis, dopamine, on-line sample concentration technique
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 359Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 毛細管電泳-不均勻電場效應輔助線上掃集法第一次被提出並且與一般的掃集法在靈敏度上以及分離效果作比較。本實驗選擇的分析物是經由NDA (naphthalene-2,3-dicarboxaldehyde) 螢光標識試劑衍生後的多巴胺以及正腎上腺素。在使用一般的掃集法技術下,當毛細管的進樣長度為30 cm (大約佔毛細管總長的1/3) 時,此時的分離度僅有1.5;然而當使用不均勻電場效應輔助線上掃集法時,分離度可以很明顯的增加到9.2。另外在偵測靈敏度上,以紫光/發光二極體 (發光功率大約2mW) 為螢光激發光源時,對於多巴胺衍生物其偵測極限大約是10-9 M,與使用一般的掃集法的偵測極限相近,因為此時的進樣量是相同的。除此之外,這個技術對於偵測尿液中低濃度的多巴胺也提供了足夠的靈敏度以及分離效果。

    An unequal electric field assisted sweeping-MEKC (UEFA/sweeping-MEKC) technique is proposed, for the first time, and compared to the normal sweeping-MEKC with reference to sensitivity and separation efficiency. NDA (naphthalene-2,3-dicarboxaldehyde) derivatized-dopamine and -norepinephrine, were selected for use as model compounds. In the case of normal sweeping-MEKC, the findings show that, when a portion (30 cm, ~1/3 of the total length of the capillary) of sample matrix was injected into the capillary, the separation resolution was only 1.5. However, this was dramatically improved to 9.2 when the UEFA/sweeping-MEKC technique was applied. In the view of sensitivity, when a violet-LED (~ 2mW) was used as the fluorescence excitation source, the limit of detection for NDA-labeled dopamine was determined to ~10-9 M, the similar to that for normal sweeping-MEKC, since the injected sample volume is same. In addition, this method also provides sufficient sensitivity and separation efficiency for the detection of low concentrations of dopamine in urine.

    中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ、Ⅳ 圖目錄 Ⅴ 表目錄 Ⅵ 第一章、緒論 1 1-1 分析物簡介 1 1-2 發光二極體簡介 2 1-3 研究目的 4 第二章、分析方法與原理 6 2-1 毛細管電泳分析之發展歷程 6 2-2 毛細管電泳分析之基本原理 8 2-2-1 電泳分離與遷移率 8 2-2-2 電滲流(EOF) 9 2-2-3 管柱分離效率 13 2-3 毛細管電泳層析法的分離模式 14 2-3-1 毛細管區帶電泳(CZE) 15 2-3-2 微胞電動層析法(MEKC) 17 2-4 毛細管電泳線上濃縮技術 20 2-4-1 毛細管電泳線上堆積法(stacking) 22 2-4-2 毛細管電泳線上掃集法(sweeping) 24 2-4-3 不均勻電場效應輔助線上掃集法(Unequal electric field assisted Sweeping-MEKC) 26 2-5 固相萃取法 28 第三章、儀器與藥品 30 3-1 自組式毛細管電泳/紫光LED誘導螢光分析儀 30 3-2 儀器與週邊設備列表 33 3-3 藥品列表 35 第四章、研究過程與結果討論 37 4-1 Dopamine and Norepinephrine衍生反應之探討 37 4-2 Dopamine and Norepinephrine衍生物製備 40 4-3 衍生物光譜性質之測量 40 4-4 紫光LED發光光譜圖之測量 43 4-5 衍生物與紫光LED相關光譜之比較 43 4-6 線上掃集法(Sweeping-MEKC)之電泳條件探討 44 4-6-1 最佳化電泳條件確立 44 4-6-2 Sweeping-MEKC檢量線製作 57 4-6-3 高導區段(High conductivity zone)對Sweeping-MEKC的影響 …………………………………………………………………59 4-6-4 Unequal electric field assisted sweeping-MEKC檢量線製作 ……….68 4-6-5 Sweeping-MEKC與Unequal electric field assisted sweeping -MEKC之比較………………………………………………...70 4-7 尿液中Dopamine及Norepinephrine的測定………………………..73 4-7-1尿液的萃取-固相萃取………………………………………….73 4-7-2結合線上濃縮技術偵測尿液萃取液…………………………...75 第五章、結論 78 參考文獻 80 發表論文 85

    [1] S. Kahkonen, J. Ahveninen, E. Pekkonen, S. Kaakkola, J. Huttunen, R. J. Ilmoniemi, I. P. Jaaskelainen, Clin. Neurophysiol. 113 (2002) 1894.
    [2] M. Grossman, G. Glosser, J. Kalmanson, J. Morris, M. B. Stern, H. I. Hurting, J. Neurol. Sci. 184 (2001) 123.
    [3] S. L. Wang, X. J. Huang, Z. L. Fang, Anal. Chem. 73 (2001) 4545.
    [4] N. Vachirapatama, P. Doble, Z. Yu, M. Macka, P. R. Haddad, Anal. Chim. Acta 434 (2001) 301.
    [5] P. A. G. Butler, B. Mills, P. C. Hauser, Analyst 122 (1997) 949.
    [6] K. Uchiyama, W. Xu, J. Qiu, T. Hobo, Fresen. J. Anal. Chem. 371 (2001) 209.
    [7] S.-C. Wang, M. D. Morris, Anal. Chem. 72 (2000) 1448.
    [8] A. L. Mank, G. S. Rose, L. O. Svaasand, F. Ludicke, A. Campana, M. J. C. Van Gemert, J. Photochem. Photobiol. B 66 (2002) 107.
    [9] W. Tong, E. S. Yeung, J. Chromatogr. A 718 (1995) 177.
    [10] G. E. Collins, Q. Lu, Anal. Chim. Acta 436 (2001) 181.
    [11] Q. Lu, G. E. Collins, Analyst 126 (2001) 429.
    [12] J. P. Quirino, S. Terabe, Science 282 (1998) 465.
    [13] F. Kohlrausch, Wiedemanns., Ann. Phys. Chem 62 (1897) 209.
    [14] A. Tiselius, Trans. Faraday Soc. 33 (1937) 524.
    [15] S. Hjerten, Chromatogr. Rev 9 (1967) 122.
    [16] J. W. Joegenson, K. D. Lukacs, J. Chromatogr 218 (1981) 209.
    [17] J. W. Joegenson, K. D. Lukacs, Anal. Chem 53 (1981) 1298.
    [18] Quirino, J. P., Terabe, S., Science 282 (1998) 465.
    [19] M. D. Zhu Hjerten, J. Chromatogr. 346 (1985) 265.
    [20] S. Hjerten, J. L. Liao, K. Yao, J. Chromatogr. 387 (1987) 127.
    [21] A. Cohen, B. L. Karger, J. Chromatogr. 397 (1987) 409.
    [22] Cartoni, G., Coccioli, F., Jasionowska, R., J. Chromatogr. A 709 (1995) 209.
    [23] H. Z. Helmholtz, Phys. Chem 7 (1897) 337.
    [24] Krattiger, B., Bruin, G. J. M., Bruin, A. E., Anal. Chem. 66 (1994) 145.
    [25] Stefansson, M., Novotny, M., Anal. Chem. 66 (1994) 1134.
    [26] Kim, Y., Morris, M. D., Anal. Chem. 66 (1994) 1168.
    [27] Zhao, Z., Malik, A., Lee, M. L., Anal. Chem. 65 (1993) 2747.
    [28] Terabe, S., Anal. Chem. 76 (2004) 240A-246A.
    [29] B. L. Legndre Jr., D. L. Moberg, D. C. Williams, S. A. Soper, J. Chromatogr. A 779 (1997) 185.
    [30] D. L. Gallaher Jr., M. E. Johnson, Analyst 124 (1999) 1541.
    [31] S. V. Rahavendran, H. T. Karnes, Anal. Chem. 69 (1997) 3022.
    [32] T. Kaneta, H. Shiba, T. Imasaka, J. Chromatogr. A 805 (1998) 295.
    [33] A. J. G. Mank, E. S. Yeung, J. Chromatogr. A 708 (1995) 309.
    [34] J. E. Melanson, C. A. Boulet, C. A. Lucy, Anal. Chem. 73 (2001) 1809.
    [35] J. E. Melanson, C. A. Boulet, C. A. Lucy, Anal. Chem. 73 (2001) 1809.
    [36] A. L. Mank, G. S. Rose, L. O. Svaasand, F. Ludicke, A. Campana, M. J. C. Van Gemert, J. Photochem. Photobiol. B 66 (2002) 107.
    [37] A. G. Ryder, T. J. Glynn, M. Przyjalgowski, B. Szuzupak, J. Fluoresc. 12 (2002) 177.
    [38] T. Toyo’oka, Modern Derivatization Methods for Separation Science, John Wiley & Sons, New York 1999.
    [39] W. Tong, E. S. Yeung, J. Chromatogr. A 718 (1995) 177.
    [40] G. E. Collins, Q. Lu, Anal. Chim. Acta 436 (2001) 181.
    [41] Q. Lu, G. E. Collins, Analyst 126 (2001) 429.
    [42] C. H. Wu, M. C. Chen, A. K. Su, P. Y. Shu, S. H. Chou, C. H. Lin, J. Chromatogr. B 785 (2003) 317.
    [43] K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Anal. Chem. 56 (1984) 111.
    [44] J. P. Quirino, S. Terabe, K. Otsuka, J. B. Vincent, G. Vigh, J. Chromatogr. A 838 (1999) 3.
    [45] J. P. Quirino, S. Terabe, J. Chromatogr. A 902 (2000) 119.
    [46] R. L. Chien, M. G. Khaledi, (Ed.), High Performance Capillary Electrophoresis (Theory, Techniques and Applications), Chapter 13, CRC Press, (1998).
    [47] D. S. Burgi, Anal. Chem. 65 (1993) 3726.
    [48] J. P. Quirino, S. Terabe, J. Chromatogr. A 850 (1999) 339.
    [49] Z. K. Shihabi, J. Chromatogr. A 744 (1996) 231.
    [50] D. Martnez, F. Borrull, M. Calull, J. Chromatogr. A 788 (1997) 185.
    [51] R. Kuldvee, M. Kaljurand, Anal. Chem. 70 (1998) 3695.
    [52] Y. He, H. K. Lee, Anal. Chem. 71 (1999) 995.
    [53] J. Palmer, J. P. Landers, Anal. Chem. 72 (2000) 1941.
    [54] S. Locke, D. Figeys, Anal. Chem. 72 (2000) 2684.
    [55] W. H. Ding, C. H. Liu, J. Chromatogr. A 929 (2001) 143.
    [56] C. X. Cao, Y. Z. He, M. Li, Y. T. Qian, M. F. Gao, L. H. Ge, S. L. Zhou, L. Yang, Q. S. Qu, Anal. Chem. 74 (2002) 4167.
    [57] J. P. Quirino, J.-B. Kim, S. Terabe, J. Chromatogr. A 357 (2002) 357.
    [58] Y. Takagai, S. Igarashi, Analyst 126 (2001) 551.
    [59] M. R. N. Monton, J. P. Quirino, K. Otsuka, S. Terabe, J. Chromatogr. A 939 (2001) 99.
    [60] R. B. Taylor, R. G. Reid, A. S. Low, J. Chromatogr. A 916 (2001) 201.
    [61] C. Fang, J. T. Liu, C. H. Lin, J. Chromatogr. B 775 (2002) 37.
    [62] C. Fang, J. T. Liu, C. H. Lin, Talanta 58 (2002) 691.
    [63] M. J. Markuszewski, P. Britz-McKibbin, S. Terabe, K. Matsuda, T. Nishioka, J. Chromatogr. A 989 (2003) 293.
    [64] C. H. Wu, M. C. Chen, A. K. Su, P. Y. Shu, S. H. Chou, C. H. Lin, J. Chromatogr. B 785 (2003) 317.
    [65] Baryla, N. E., Melanson, J. E., McDermott, M. T., Lucy, C. A., Anal. Chem. 73 (2001) 4558.
    [66] J. P. Quirino, S. Terabe, Anal. Chem. 72 (2000) 1023.
    [67] K. Z. Taylor, D. S. Waddell, E. J. Reiner, K. A. Macpherson, Anal. Chem 67 (1995) 1186.
    [68] S. Chiron, S. Dupas, P. Scribe, D.Barcelo, J. Chromatogr. A 665 (1994) 295.
    [69] D. Barcelo, J. Chromatogr 643 (1993) 117.
    [70] S. Butz, T. Heberer, H. J. Stan, J. Chromatogr. A 677 (1994) 63.
    [71] W. Huang, W. Andollo, W. L. Hearn, J. Anal. Toxicol 16 (1992) 307.
    [72] R. G. Carlson, K. Srinivasachar, R. S. Givens, B. K. Matuszewski, J. Org. Chem. 51 (1986) 3978.
    [73] M. R. Lee, S. C. Yu, C. L. Lin, Y. C. Yeh, J. Anal. Toxicol 21 (1997) 278.
    [74] M. M. Nerurkar, M.J. Rose, J. F. Stobaugh, R. T. Borchardt, J Pharm Biomed Anal 15 (1997) 945.
    [75] M. L. Kilkenny, M. Slavik, C. M. Riley, J. F. Stobaugh, J Pharm Biomed Anal 17 (1998) 1205.
    [76] T. Kawasaki, K. Imai, T. Higuchi, O. S. Wong, Biomedical Chromatography VOL. 4, NO. 3 (1990) 113.
    [77] Kawasaki, T., Higuchi, T., Imai, K., Wong, O. S., Anal. Biochem. 180 (1989) 279.
    [78] Robert, F., Bert, L., Denoroy, L., Renaudt, B., Anal. Chem. 67 (1995) 1838
    [79] M. A. Raggi, C. Sabbioni, G. Casamenti, G. Gerra, N. Calonghi, L. Masotti, J. Chromatogr. B 730 (1999) 201.
    [80] D. Talwar, C. Williamson, A. McLaughlin, A. Gill and D. St. J. O. Reilly, J. Chromatogr. B 769 (2002) 341.
    [81] J. T. Baker Application Note BI-007.

    無法下載圖示
    QR CODE