Basic Search / Detailed Display

Author: 連中豪
Chung-Hao,Lien
Thesis Title: 宜蘭清水溪流域河道變化及輸砂行為分析
River Channel Migration and Sediment Transportation Analysis-example from Chinshui River, Ilan Northern Taiwan
Advisor: 葉恩肇
Yeh, En-Chao
張國楨
Chang, Kuo-Jen
Degree: 碩士
Master
Department: 地球科學系
Department of Earth Sciences
Thesis Publication Year: 2013
Academic Year: 101
Language: 中文
Number of pages: 94
Keywords (in Chinese): 數值地型模型河道變遷宜蘭清水溪
Keywords (in English): Digtial Terrain Model, River channel analysis, Ilan, Chinshui River
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 300Downloads: 9
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 台灣位於菲律賓海板塊與歐亞大陸板塊的斜向聚合碰撞帶上,由於板塊的擠壓作用,導致地震頻繁,地形陡峭,河川因而坡陡流急,沖刷嚴重。同時,台灣位於西太平洋颱風路徑上,大部分颱風帶來的豪雨常引起嚴重的災情。近年全球氣候異常,許多研究指出台灣地區年降雨日數有減少趨勢,但降雨強度增強,豪大雨發生頻率與規模亦有加大現象。由於地質、地形、氣候與人為的影響,使得臺灣地區崩塌、地滑、土石流等災害一再發生,造成生命財產損失。
    台灣主要河川源頭多於高山地區,高山對於集水區的輸砂與水文有著重要的關係。中海拔以上地區,因地震與颱風的關係,容易造成許多崩積物運移而堆積於河道。以往欲了解河道的變化,常因交通不便、地形資料缺乏,造成研究無法進行。同時對於河道分析,需要長時間的監測,以取得輸砂量、降雨和河川流量等資料,以進行相關性的分析。針對輸砂量的評估,通常藉由河道中的懸浮顆粒,與河川流量、流速等資料進行計算。但是粒徑大的顆粒,如:礫石等,常以推移、跳動等方式搬運,因此難以進行分析
    近年來因遙測技術之快速發展,數值地形模型(Digital Terrain Model; DTM)之建立日趨完備。因此,本研究運用航空照片建置不同時期之高精度數值地形模型,利用ArcGIS對於民國82年至97年宜蘭清水溪流域進行長時間的河道分析。首先對於河道位置的改變及沖積平原的變化作觀察,主河道隨著時間向兩側移動與侵蝕,沖積平原隨著時間有加大的趨勢,並配合各時期高程差變化對清水溪河道歷程作解釋,整體河道以堆積行為為主,河道兩側有大量堆積行為,於82至91年及95至97年期間河道有明顯的變化,推測可能為雨量事件造成之影響。接著,於河道中有變化位置及堆積行為明顯的兩側繪製多條橫剖面,觀察整個河谷變化的情形,其結果顯示,山坡崩塌為兩側大量堆積的主因,且於橫剖面確實看到河道側向侵蝕的行為。而沿著河道繪製縱剖面,觀察從中游至下游河道的變化情形,95年於中游區發生堆積事件使河道改變,整體河道高程於82年後變高,堆積約0.7m於河道。然後對河道中及兩側量體作估算,觀察了侵蝕與堆積的行為與地層岩性構造是相關的,最後藉由野外調查佐證了數值地形模型觀察的結果,映證了DTM之精確性。

    Taiwan is located in the conjuncted belt of oblique convergence between the Philippine Sea plate and the Eurasian plates. Due to oblique collision between two plates, earthquakes take place frequently, and rugged topography has been developing. Also, steep slope causes river short and rapid and wash out strongly. At the same time, Taiwan is on the passage of typhoons come from western Pacific Ocean. Heavy rains brought by most of the typhoons often cause serious damage. Especially, in recent years, global climate changes dramatically. Many of studies further pointed out that not only the annual number of rainy days in Taiwan has decreased but also the rainfall intensity has increased and the frequency and magnitude of heavy rain has increased as well. Because conditions of geology, topography, climate and human impact, natural hazards, such as slump, landslide, and debris flow, in Taiwan occur repeatedly. It causes huge loss of life and property.
    Most of major rivers in Taiwan start in apline areas. Thus, topography in mountains has strong influences on sediment transport and catchment hydrology. Above medium elevations, because of frequent earthquake and typhoon, landslide is easy to be induced and thus sediments deposit in the river very often. In the past, the study of river channel migration usually cannot be completed due to inconvenient transportation and lack of detailed topographic data. At the same time for the analysis of river channel, a long term monitoring is needed to gather data, for example, the amount of sediment transport, rainfall and river flux. Assessment of sediment yield is estimated usually by the data of suspended loads, river flux, and velocity. But large particles, such as gravel, often transport by slating and translation. Thus, the bed load is difficult to estimate.
    In recent years, the rapid development of remote sensing technology establishes the digital terrain models into a better performance. This study uses aerial photographs to construct the high precision digital terrain models of different periods and analyzes the river migration of ChingShui River, Ilan from 1993 to 1997. The observations of river migration and flood plain change indicate that lateral erosion of ChingShui River and size of flood plain is increased. And Chingshui river course to explain the difference in elevation changes with each period, the overall river accumulation behavior, and the river on both sides of a large accumulation behavior. Significant changes in 82-91 years and 95-97 years during the river, presumably to cause the effect of rainfall events. The river, changes in location and accumulation behavior on both sides of drawing a number of cross-section to observe the situation of the entire valley change, the results show that both sides of the large accumulation of the main because of the hillside collapsed, and in cross-section do see the river lateral erosion behavior. Stream profile, midstream to downstream river changes, 1995, the accumulation of events occurred in the midstream area to the river to change the overall river elevation change after 82 years, the accumulation of about 0.7m in the river. River and on both sides of the amount of the estimates, Chingshui river sediment content compared to the the Lanyang statistics is consistent. Erosion and accumulation behavior and formation lithology constructed distribution is related by field survey, more evidence the results of a digital terrain model was observed, reflected, the accuracy of the DTM.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 一、緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究大綱 3 1.4文獻回顧 4 二、研究區域 6 2.1地理環境 6 2.1.1地理地形 6 2.1.2氣候環境 7 2.2地質背景 7 2.2.1地質岩性 8 2.2.2地質構造 9 第三章、研究方法 12 3.1航空攝影測量 12 3.1.1影像來源 12 3.1.2相機介紹 13 3.2數值地形模型建置流程 15 3.2.1像片選擇 17 3.2.2地面控制點的選取 18 3.2.3空中三角計算 19 3.3平差 22 3.4軟體介紹 23 四、數值地形模型展示 24 4.1航空像片年代 24 4.2數值地形模型建置成果 25 4.3航空像片正射成果 43 4.4高斯模糊-平滑曲面選定 47 4.5數值地形模型平差成果 49 4.6不同航帶平差方法分析 54 第五章、研究成果與討論 56 5.1河道分析流程 56 5.1.1主河道辨識與分析 56 5.1.2河道範圍變化分析 60 5.2高程變化分析 63 5.2.1 河道剖面 66 5.2.2野外調查 72 5.3河道量體計算 75 5.4地層對比 78 第六章 結論與建議 80 6.1結論 80 6.2建議 81 參考文獻 82 附錄一:各時期控制點資訊 84 附錄二:各時期影像外方位參數 88 附錄三:碩士學位考試口試委員提問與回覆對照表 92

    1. 張麗旭(1974):臺灣變質區第三系基於小型有孔蟲之生物地層學研究,中國地質學會會刊,第17 號, 85-93
    2. 何春蓀(1975)臺灣地質概論,臺灣地質圖幅說明書,中華民國經濟 部出版,共153頁
    3. 吳永助(1976):清水土場地熱區及其外圍之地質,礦業技術,第14 期,484-489
    4. 曾長生(1978):宜蘭縣清水及土場區地質及地熱產狀,臺灣石油地質,第15號,11-23
    5. 石再添、張瑞津、黃朝恩(1980):河流與地下水,幼獅文化事業公司,118p
    6. 何春蓀(1989):普通地質學,五南出版社,784頁
    7. 宜蘭縣南澳鄉公所(1993):南澳鄉行政區域圖
    8. 林啟文、林偉雄(1995):台灣地質圖及說明書,三星圖幅,第十五號,經濟部中央地質調查所出版,
    9. 何維信(1995):航空攝影測量學,大中國圖書公司,共602頁
    10. 宋國城、傅炯貴、齊士崢﹙1998﹚:蘭陽溪上游沖積扇河階的成因—兼論梨山斷層的活動證據,台灣之第四紀第七次研討會﹙台灣大學﹚,39-43
    11. 齊士崢、宋國城、蔡衡﹙1998﹚:台灣山區的大規模沖積扇階地與新構造運動,台灣之第四紀第七次研討會﹙台灣大學﹚,44-47
    12. 林昭遠、林文賜(1999):集水區坡長因子自動萃取之研究,中華水土保持學報,30(4),313-320
    13. 林昭遠、林文賜、張力仁(1999):數值地型模型應用於集水區規劃與整治之研究,中華水土保持學報,30(2),149-155
    14. 張瑞津、沈淑敏、劉盈劭、林雪美(2003):大地震及降雨對河道形態的影響-陳有蘭溪小支流的個案研究,中國地理學會會刊,31,95-110
    15. 陳雍正(2003):航空攝影測量於河川管理之實務應用,碩士論文,國立中興大學土木工程學系。
    16. 王蜀嘉、曾義星(2003):高精度極高解析度數值地形模型測製規範,DTM規範計畫草案,國立成功大學測量及空間資訊學系
    17. 林姵伶(2004):應用高解析影像對產生DSM之精度分析,碩士論文,國立臺灣師範大學。
    18. 沈明佑(2005):以航測輔助劃定土砂災害河川區域之探討--以大甲溪馬鞍壩至天輪壩河段為例,碩士論文,國立中興大學
    19. 詹水性(2006):應用數值高程模型推估河川砂石疏濬量可行性之評估,碩士論文,國立屏東科技大學土木工程研究所
    20. 林文燦(2006):電子地圖製程改善的實證研究,中華民國品質學會第42 屆年會暨第12 屆全國品質管理研討會
    21. 陳培源(2008):台灣地質,台灣省應用地質技師公會
    22. 陳英煥(2008):空照數位像機拍攝高重疊影像匹配高密度點雲,航測及遙測學刊-第十三卷-第三期,219-230
    23. 王嘉銘(2009):應用航空影像建置數值地形模型-以九九峰地區為例,碩士論文,國立台北科技大學土木與防災研究所
    24. 李俊彥(2009):數值地形模型於山崩及後續地形演化之應用-草嶺山崩為例,碩士論文,國立台北科技大學土木與防災研究所
    25. 賴億菁(2009):利用河道形貌分析構造的相對活動性;以大安溪流域為例,碩士論文,國立台灣大學地質學研究所
    26. 楊智凱(2010):高精度數值地形模型建置及其在活動構造地貌分析之運用,碩士論文,國立台北科技大學土木防災研究所
    27. 莊育侃(2010):運用歷史航照與日治地形圖資料探討花蓮地區之地形變遷,碩士論文,國立台北科技大學土木方災研究所
    28. 李虹瑾(2011):運用數值地形模型初探草嶺山崩地百年來地表變遷,碩士論文,國立台北科技大學土木防災研究所
    29. 黃珮珊(2011):多資料來源DTM於變遷分析之精度評估,碩士論文,國立台北科技大學土木防災研究所
    30. 盧建中、羅偉、劉佳玫(2011):宜蘭清水地熱區之地質構造
    31. 趙宥睿(2012):數值地形模型精度評估及應用-以猴山岳地華為例,碩士論文,國立台北科技大學土木方災研究所
    32. MATCH-T DSM 5.2.I., MATCH-T DSM tutorial, Inpho Gmbh,2009,41pp.
    33. Leica Geosystems GIS &Mapping, L., ERDAS Field GuideTM, 7th Edition., Atlanta:Georgia.
    34. K. J. Chang, A. Taboada and Y. C. Chan, "Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake, " Geomorphology, no.71, 2005, pp.293-309.
    35. K. J. Chang, A. Taboada, M. L. Lin and R. F. Chen, "Analysis of landsliding by earthquake shaking using a block-on-slope thermo-mechanical model:Example of Jiufengershan landslide, central Taiwan," Engineering Geology, no.80, pp.151-163.

    下載圖示
    QR CODE