Author: |
吳榮軒 Wu, Rong-Xuan |
---|---|
Thesis Title: |
路易斯酸輔佐環型2,3-環氧基炔醯胺、六環炔‒炔醯胺及呋喃炔醯胺化合物的環化反應:雙環㗁唑啶、螺旋γ-內醯胺與吡咯衍生物的合成 Lewis Acid-Promoted Cyclization Reactions of Cyclic 2,3-Epoxy-1-ynamides, Six-Membered Ring Yne-Ynamides, and Ynamide-Tethered Furans: Synthesis of Bicyclic Oxazolidines, Spiro γ-Lactams, and Pyrrole Derivatives. |
Advisor: |
葉名倉
Yeh, Ming-Chang |
Degree: |
碩士 Master |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2018 |
Academic Year: | 106 |
Language: | 中文 |
Number of pages: | 355 |
Keywords (in Chinese): | 路易斯酸 、氯化鋅 、雙環㗁唑啶 、炔‒炔醯胺 、氯化亞鐵 、螺旋γ-內醯胺 、三氯化金 、吡咯 |
Keywords (in English): | Lewis acid, zinc chloride, bicyclic oxazolidine, yne-ynaminde, iron(II) chloride, spiro γ-lactam, gold(III) chloride, pyrrole |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.045.2018.B05 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 73 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
本文分為三個主題,依序探討路易斯酸輔佐環型2,3-環氧基-1-炔醯胺化合物、六環炔‒炔醯胺化合物與呋喃炔醯胺化合物,分別合成雙環㗁唑啶、螺旋 γ-內醯胺與吡咯衍生物。
(1) 利用環型2,3-環氧基-1-炔醯胺化合物作為起始物,在氯化鋅輔佐下,密封管中進行分子內環化反應,得到具三個立體中心、單一(Z)構型的雙環㗁唑啶骨架化合物。此反應優點為操作簡單、產率高且得到唯一的立體異構物。
(2) 利用六環炔‒炔醯胺化合物作為起始物,在乾燥空氣及氯化亞鐵輔佐下進行分子內環化反應,得到氯取代的螺旋 γ-內醯胺化合物。此反應經由開環‒E2 消去反應‒aza-Prins-cyclization 系列形成氯取代的螺旋 γ-內醯胺化合物,優點為起始物製備容易與條件溫和。
(3) 利用金(III)催化呋喃炔醯胺化合物進行分子內環化反應,得到順式-3-(3-側氧基-3-芳香基-1-丙烯基)-4-苯基吡咯衍生物。此反應優點為條件溫和及反應時間短。
Three topics are discussed in this thesis. The Lewis acid-promoted cyclization reactions of cyclic 2,3-epoxy-1-ynamides, six-membered ring 1-yne-ynamides and ynamide-tethered furans afforded bicyclic oxazolidines, spiro γ-lactams and pyrrole derivatives, respectively.
(1) The ZnCl2-promoted intramolecular cyclization reactions of aryl-substituted cyclic 2,3-epoxy-1-ynamides in a sealed tube yielded bicyclic oxazolidines containing three contiguous stereocenters with Z configuration. This methodology benefits from simple procedures, excellent yields, and a single stereoisomer of desired products.
(2) The FeCl2-promoted intramolecular cyclization of alkyl or aryl-substituted six-membered 1-yne-ynamides under dry air afforded chlorinated spiro γ-lactams. The reaction mechanism was suggested to proceed via a ring-opening‒E2-elimination‒aza-prins-cyclization sequence, generating chlorinated spiro γ-lactams. The advantages of this reaction are mild reaction conditions and easily available of starting materials.
(3) Gold(III)-catalyzed intramolecular cyclization reaction of ynamide-tethered furans afforded 3-((Z)-(3-aryl-3-oxopropen-1-yl) -4-phenyl-pyrrole derivatives. The advantages of this reaction are mild reaction conditions and short reaction times.
1. Riley, J. C. Population and Development Review 2005, 31, 537.
2. Central Intelligence Agency. The World Factbook https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html
3. Tai, H.-C.; Chang, K.-J.; Lin, J. C.-Y. Taiwan Medical Journal 2014, 57, 15.
4. Gao, Y.; Wang, F.; Zhou, D.-S.; Li, Y.; Liu, J.-K. Nat. Prod. Bioprospect. 2011, 1, 104.
5. Hirasawa, Y.; Arai, H.; Zaima; Oktarina, R.; Rahman, A.; Ekasari, W.; Widyawaruyanti, A.; Indrayanto, G.; Zaini, N. C.; Morita, H. J. Nat. Prod. 2009, 72, 304.
6. Arai, H.; Hirasawa, Y.; Rahman, A.; Kusumawati, I.; Zaini, N. C.; Sato, S.; Aoyama, C.; Takeo, J.; Morita, H. Bioorg. Med. Chem. 2010, 18, 2152.
7. Chang, L. C.; Bhat, K. P. L.; Kennelly, E. J.; Fong, H. H. S.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 1998, 61, 1257.
8. Li, X. Y.; Yu, Y.; Jia, M.; Jin, M. N.; Qin, N.; Zhao, C.; Duan, H. Q. Molecules 2016, 21, 1283.
9. Brück, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kühnhold, J.; Klueken, A. M.; Nauen, R.; Niebes, J.-F.; Reckmann, U.; Schnorbach, H.-J.; Steffens, R.; Van Waetermeulen, X. Crop Prot. 2009, 28, 838.
10. Lee, H.; Lee, J.; Lee, S. H.; Shin, Y.; Jung, W.; Kim, J.-H.; Park, K.; Kim, K.; Cho, H. S.; Ro, S.; Lee, S. H.; Jeong, S. W.; Choi, T.; Chung, H.-H.; Koh, J. S. Bioorg. Med. Chem. Lett. 2001, 11, 3069.
11. Lee, S. K.; Kim, J. M.; Lee, M. Y.; Son, K. H.; Yeom, Y. I.; Kim, C. H.; Shin, Y.; Koh, J. S.; Han, D. C.; Kwon, B. M. Int. J. Cancer 2006, 118, 2172.
12. Zhang, W.; Ma, L.; Li, S.; Liu, Z.; Chen, Y.; Zhang, H.; Zhang, G.; Zhang, Q.; Tian, X.; Yuan, C.; Zhang, S.; Zhang, W.; Zhang, C. J. Nat. Prod. 2014, 77, 1887.
13. Wu, X.-F.; Beller, M. Economic synthesis of heterocycles : zinc, iron, copper, cobalt, manganese and nickel catalysts Cambridge: Royal Society of Chemistry: 2014.
14. Cabanal-Duvillard, I.; Berrien, J.-F.; Ghosez, L.; Husson, H.-P.; Royer, J. Tetrahedron 2000, 56, 3763.
15. Espino, C. G.; Du Bois, J. Angew. Chem. Int. Ed. 2001, 40, 598.
16. Breslow, R.; Gellman, S. H. J. Am. Chem. Soc. 1983, 105, 6729.
17. Padwa, A.; Stengel, T. Org. Lett. 2002, 4, 2137.
18. Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492.
19. Peña-López, M.; Neumann; Beller, M. Angew. Chem. Int. Ed. 2016, 55, 7826.
20. Karad, S. N.; Bhunia, S.; Liu, R. S. Angew. Chem. Int. Ed. 2012, 51, 8722.
21. Siva Kumari, A. L.; Siva Reddy, A.; Swamy, K. C. Org. Lett. 2016, 18, 5752.
22. Kelgokmen, Y.; Cayan, Y.; Zora, M. Eur. J. Org. Chem. 2017, 2017, 7167.
23. Sniady, A.; Durham, A.; Morreale, M. S.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2007, 9, 1175.
24. Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.
25. Wyrębek, P.; Sniady, A.; Bewick, N.; Li, Y.; Mikus, A.; Wheeler, K. A.; Dembinski, R. Tetrahedron 2009, 65, 1268.
26. Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
27. Yeh, M. C.; Shiue, Y. S.; Lin, H. H.; Yu, T. Y.; Hu, T. C.; Hong, J. J. Org. Lett. 2016, 18, 2407.
28. 薛園馨碩士論文,國立臺灣師範大學化學所,2016年.
29. Saito, N.; Saito, K.; Shiro, M.; Sato, Y. Org. Lett. 2011, 13, 2718.
30. Wang, X. N.; Winston-McPherson, G. N.; Walton, M. C.; Zhang, Y.; Hsung, R. P.; DeKorver, K. A. J. Org. Chem. 2013, 78, 6233.
31. Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Angew. Chem. Int. Ed. 2009, 48, 4381.
32. Zhang, X.; Li, H.; You, L.; Tang, Y.; Hsung, R. P. Adv. Synth. Catal. 2006, 348, 2437.
33. Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004, 6, 1151.
34. Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org. Chem. 2006, 71, 4170.
35. Kitahara, K.; Toma, T.; Shimokawa, J.; Fukuyama, t. Org. Lett. 2008, 10, 2259.
36. Keith, J. M.; Gomez, L. J. Org. Chem. 2006, 71, 7113.
37. Sen, S. E.; Roach, S. L. Synthesis 1995, 1995, 756.
38. Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
39. Sonogashira, K. J. Organomet. chem. 2002, 653, 46.
40. Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. Chem. Biol. Drug. Des. 2014, 83, 450.
41. Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
42. Ritchie, T. J.; Macdonald, S. J. Drug Discov. Today 2009, 14, 1011.
43. Armanino, N.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 6814.
44. Panchaud, P.; Ollivier, C.; Renaud, P.; Zigmantas, S. J. Org. Chem. 2004, 69, 2755.
45. Kalaitzakis, D.; Antonatou, E.; Vassilikogiannakis, G. Chem. Commun. 2014, 50, 400.
46. Kalaitzakis, D.; Montagnon, T.; Antonatou, E.; Bardaji, N.; Vassilikogiannakis, G. Chem. Eur. J. 2013, 19, 10119.
47. Kalaitzakis, D.; Montagnon, T.; Alexopoulou, I.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2012, 51, 8868.
48. Carballo, R. M.; Ramirez, M. A.; Rodriguez, M. L.; Martin, V. S.; Padrón, J. I. Org. Lett. 2006, 8, 3837.
49. Ishida, T.; Kobayashi, R.; Yamada, T. Org. Lett. 2014, 16, 2430.
50. Martínez-Esperón, M. F.; Rodríguez, D.; Castedo, L.; Saá, C. Tetrahedron 2006, 62, 3843.
51. Martínez-Esperón, M. F.; Rodríguez, D.; Castedo, L.; Saá, C. Tetrahedron 2008, 64, 3674.
52. Martínez-Esperón, M. F.; Rodríguez, D.; Castedo, L.; Saá, C. Org. Lett. 2005, 7, 2213.
53. Ghosh, N.; Nayak, S.; Sahoo, A. K. Chem. Eur. J. 2013, 19, 9428.
54. Campbell, C. D.; Greenaway, R. L.; Holton, O. T.; Chapman, H. A.; Anderson, E. A. Chem. Commun. 2014, 50, 5187.
55. Greenaway, R. L.; Campbell, C. D.; Chapman, H. A.; Anderson, E. A. Adv. Synth. Catal. 2012, 354, 3187.
56. Bach, T.; Kluegge, J.; Herdtweck, E. Synlett 2004, 1199.
57. Hayashi, Y.; Shinokubo, H.; Oshima, K. Tetrahedron Lett. 1998, 39, 63.
58. Hedstrom, A.; Bollmann, U.; Bravidor, J.; Norrby, P. O. Chem. Eur. J. 2011, 17, 11991.
59. Kleimark, J.; Hedström, A.; Larsson, P.-F.; Johansson, C.; Norrby, P.-O. ChemCatChem 2009, 1, 152.
60. Bedford, R. B.; Betham, M.; Bruce, D. W.; Danopoulos, A. A.; Frost, R. M.; Hird, M. J. Org. Chem. 2006, 71, 1104.
61. Wang, S.-S.; Fu, H.; Wang, G.; Sun, M.; Li, Y.-M. RSC Advances 2016, 6, 52391.
62. 林欣慧博士論文,國立臺灣師範大學化學所,2018年.
63. 江岱瑾碩士論文,國立臺灣師範大學化學所,2018年.
64. 張依湄碩士論文,國立臺灣師範大學化學所,2017年.
65. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A. Introduction to spectroscopy, 5th ed. Brooks/Cole Cengage Learning: 2015.
66. Liu, X.; McCormack, M. P.; Waters, S. P. Org. Lett. 2012, 14, 5574.
67. Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
68. Kramer, S.; Madsen, J. L. H.; Rottlӓnder, M.; Skrydstrup, T. Org. Lett. 2010, 12, 2758.
69. Hashmi, A. S. K.; Rudolph, M.; Bats, J. W.; Frey, W.; Rominger, F.; Oeser, T. Chem. Eur. J. 2008, 14, 6672.
70. Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553.
71. Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7, 5409.
72. Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164.
73. Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358.
74. 簡子強碩士論文,國立臺灣師範大學化學所,2018.
75. 林冠碩碩士論文,國立臺灣師範大學化學所,2018.
76. 陳筱鳳博士論文初稿,國立臺灣師範大學化學所,2018.
77. Zubkov, F. I.; Golubev, V. D.; Zaytsev, V. P.; Bakhanovich, O. V.; Nikitina, E. V.; Khrustalev, V. N.; Aysin, R. R.; Timofeeva, T. V.; Novikov, R. A.; Varlamov, A. V. Chem. Heterocycl. Compd. 2016, 52, 225.
78. Hashmi, A. S. K.; Pankajakshan, S.; Rudolph, M.; Enns, E.; Bander, T.; Rominger, F.; Frey, W. Adv. Synth. Catal. 2009, 351, 2855.
79. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
80. Armarego, W. L. F.; Chai, C. L. L.; 6th ed.; Elsevier Inc.: Burlington, MA, 2009.