Basic Search / Detailed Display

Author: 李維庭
Lee, Wei-Ting
Thesis Title: 鎵、鋁、銅卡本錯合物的合成、探討及銅卡本錯合物應用於碳-氫烯丙基化反應
Synthesis and Studies of Carbones Supported Gallium-, Aluminum-, and Copper(I)-Complexes and Catalytic Application for C-H Allylation
Advisor: 王朝諺
Ong, Tiow-Gan
Degree: 碩士
Master
Department: 化學系
Department of Chemistry
Thesis Publication Year: 2018
Academic Year: 106
Language: 中文
Number of pages: 155
Keywords (in Chinese): 同碳雙碳烯
Keywords (in English): carbodicarbene
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.022.2018.B05
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 117Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 在有機金屬中,同碳雙碳烯 (carbodicarbene) 屬於較新穎的配位基 (ligand),結構、性質、應用上仍有許多探討及可發展的空間。本論文以片段組合方式,進行簡單的SN2反應合成出一系列不對稱的卡本 (carbones),再分別與氯化鎵進行反應,藉由所得出的晶體結構,氯化鎵角度總和的變化與已知的TEP數值比較,排序出不同卡本的σ電子給予能力,也成功利用卡本與氯化鋁反應得到相同的趨勢。同時,利用同碳膦烷碳烯 (carbophosphinocarbene, CPC) 作為路易士酸的偵測器,根據錯合物磷譜化學位移的改變,可以比較不同鋁試劑的路易士酸強度。
    我們將卡本與氯化亞銅反應,合成卡本之銅錯合物並應用於碳-氫烯丙基化反應 (C-H allylation),利用烯丙基鹵化物與氟苯進行反應,可得到預期之偶合產物。我們成功得到催化劑與叔丁醇鈉配位基置換 [(CDC)CuOtBu] 2e及反應中間體 [(CDC)CuC6F5] 2f之晶體結構,藉此推導合理反應機制。

    Carbodicarbenes is a novel ligand with a strong σ donor, and there are many studies related to its structures, properties and applications in the field of organometallic chemistry. In this work of thesis, a series of asymmetric carbones were synthesized by simple SN2 reaction in a modular design, which is subsequently reacted with gallium and aluminum complexes to obtain the crystal structures.. The sigma donation ability of different gallium and aluminum carbone complexes were also correlated with the parameter of the molecular structures and other spectroscopy data.
    In second part of thesis, copper(I) complexes were synthesized by using carbones and copper (I) chloride, and were applied to C-H allylation. Reaction of the allylic halides with fluorobenzenes gave the desired coupling products. We succeeded in obtaining the crystal structure of the catalyst and sodium tert-butoxide ligand exchange [(CDC)CuOtBu] 2e and the reaction intermediate [(CDC)CuC6F5] 2f, thereby deriving a reasonable reaction mechanism.

    中文摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 式目錄 x 附表目錄 xiii 附圖目錄 xiv 簡稱說明 xviii 第一章 緒論 1 1-1 前言 1 1-2 碳烯 2 1-3 含氮雜環碳烯 6 1-4 彎曲型重烯—同碳雙碳烯 9 1-5 銅催化碳-氫烯丙基化反應 14 1-6 研究動機 17 第二章 結果與討論 18 2-1 同碳膦烷碳烯及同碳雙碳烯之合成及探討 18 2-2  同碳膦烷碳烯及同碳雙碳烯之鎵、鋁錯合物的合成及探討 26 2-2-1 同碳膦烷碳烯及同碳雙碳烯鎵、鋁錯合物之合成 27 2-2-2 同碳膦烷碳烯及同碳雙碳烯鎵、鋁錯合物結構鑑定及探討 31 2-3 銅催化碳-氫烯丙基化反應 42 2-3-1 銅催化碳-氫烯丙基化反應之催化劑合成 42 2-3-2 銅催化碳-氫烯丙基化反應之最佳化 44 2-3-3 銅催化碳-氫烯丙基化反應之結果與探討 46 第三章 結論 50 第四章 實驗方法 51 4-1 實驗儀器 51 4-1-1 核磁共振儀 (Nuclear magnetic resonance spectrometer) 51 4-1-2 高解析度磁場式質譜儀 (High resolution magnetic sector mass spectrometer) 52 4-1-3  X-ray單晶繞射解析 (X-ray single-crystal diffraction analysis) 52 4-2 藥品與溶劑 53 4-3 實驗步驟 54 4-3-1 合成步驟 54 4-3-2 銅催化碳-氫烯丙基化反應 65 附錄一 X-ray晶體與數據 71 附錄二 核磁共振光譜圖 92 參考文獻 154

    [1] Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-92.
    [2] Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature. 2014, 510, 485.
    [3] Crabtree, R. H. J. Organomet. Chem. 2005, 690, 5451-5457.
    [4] H.‐W., W.; H.‐J., S. Angew. Chem., Int. Ed. Engl. 1968, 7, 141-142.
    [5] Öfele, K. J. Organomet. Chem. 1968, 12, P42-P43.
    [6] Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.
    [7] Saalfrank, R.; Lurz, C.; Georg Thieme Verlag: Stuttgart: 1993, 3093-3102.
    [8] Edwin, W.; Wilhelm, S.; Bernd, H.; Georg, W.; Hans‐Jürgen, D. J. Phys. Org. Chem. 1995, 8, 94-96.
    [9] Ramirez, F.; Desai, N. B.; Hansen, B.; McKelvie, N. J. Am. Chem. Soc. 1961, 83, 3539-3540.
    [10] Vicente, J.; Singhal, A. R.; Jones, P. G. Organometallics 2002, 21, 5887-5900.
    [11] Ralf, T.; Florian, Ö.; Bernhard, N.; Wolfgang, P.; Gernot, F. Angew. Chem., Int. Ed. 2006, 45, 8038-8042.
    [12] Ralf, T.; Gernot, F. Angew. Chem., Int. Ed. 2007, 46, 8695-8698.
    [13] Adam, D. C.; Vincent, L.; Bruno, D.; Guy, B. Angew. Chem., Int. Ed. 2008, 47, 3206-3209.
    [14] Fürstner, A.; Alcarazo, M.; Krause, H.; Lehmann, C. W. J. Am. Chem. Soc. 2007, 129, 12676-12677.
    [15] Alois, F.; Manuel, A.; Richard, G.; W., L. C. Angew. Chem., Int. Ed. 2008, 47, 3210-3214.
    [16] Wen‐Ching, C.; Jiun‐Shian, S.; Titel, J.; Chun‐Jung, P.; Yen‐Hsu, L.; Yi‐Ping, W.; Wei‐Chih, S.; A., Y. G. P.; Tiow‐Gan, O. Angew. Chem., Int. Ed. 2015, 54, 15207-15212.
    [17] Yudai, S.; Bo, S.; Ken, S.; Tatsuhiko, Y.; Shigeki, M.; Motomu, K. Angew. Chem., Int. Ed. 2015, 54, 9944-9947.
    [18] Tsuji, J.; Kiji, J.; Imamura, S.; Morikawa, M. J. Am. Chem. Soc. 1964, 86, 4350-4353.
    [19] Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467-4483.
    [20] A., v. R. J.; Martin, L.; S., v. C. L.; L., S. A.; Elisabeth, B.; Eite, D. Adv. Synth. Catal. 2009, 351, 1637-1647.
    [21] Weilong, X.; Sukbok, C. Angew. Chem., Int. Ed. 2016, 55, 1876-1880.
    [22] Stenhagen, I. S. R.; Kirjavainen, A. K.; Forsback, S. J.; Jorgensen, C. G.; Robins, E. G.; Luthra, S. K.; Solin, O.; Gouverneur, V. Chem. Commun. 2013, 49, 1386-1388.
    [23] El-Hellani, A.; Monot, J.; Tang, S.; Guillot, R.; Bour, C.; Gandon, V. Inorg. Chem. 2013, 52, 11493-11502.
    [24] Chen, W.-C.; Hsu, Y.-C.; Lee, C.-Y.; Yap, G. P. A.; Ong, T.-G. Organometallics 2013, 32, 2435-2442.
    [25] Tolman, C. A. Chem. Rev. 1977, 77, 313-348.
    [26] Liu, S.; Chen, W.-C.; Ong, T.-G. In Modern Ylide Chemistry: Applications in Ligand Design, Organic and Catalytic Transformations; Gessner, V. H., Ed.; Springer International Publishing: Cham, 2018, 51-71.

    無法下載圖示 This full text is not authorized to be published.
    QR CODE