Author: |
陳冠甫 |
---|---|
Thesis Title: |
有機共軛酸在太陽能電池染料的應用 |
Advisor: | 葉名倉 |
Degree: |
碩士 Master |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2006 |
Academic Year: | 94 |
Language: | 中文 |
Number of pages: | 76 |
Keywords (in Chinese): | 二氧化鈦 、染料敏化 、太陽能電池 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 148 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
中文摘要
在本篇論文中,我們研發以有機共軛酸當作主要骨架的有機化合物染料4-(4-二甲胺苯)1,3-環己二烯羧酸 (5)、4-(4-二苯胺苯)1,3-環己二烯羧酸 (10)和4-(4-(9H-咔唑基)苯)1,3-環己二烯羧酸 (15)來當作染料敏化太陽能電池的材料,並測試、探討其物理性質,以作為將來發展類似結構時的依據。在這些合成的有機化合物染料結構中,均包含了環己二烯(1,3-cyclohexdiene)的架構,這可使整個結構的穩定度大幅提高。
在物理性質方面,我們測試化合物(5、10、15)其個別的吸收光譜、螢光激發光譜和電化學性質。同時也將其製作成元件(染料敏化太陽能電池),利用太陽光模擬及特定波長光束輸出系統進行光電轉換效率(η)與單色光轉換效率(IPCE)的測試。
Abstract
In this thesis, we synthesized three organic dye-sensitized compounds 4-(4-(Dimethylamin)phenyl)cyclohexa-1, 3-dienecarboxylic acid (5)、4-(4-(Diphenylamino)phenyl)cyclohexa-1, 3-dienecarboxylic acid (10) and 4-(4-(9H-Carbazol-9-yl)phenyl)cyclohexa-1, 3-dienecarboxylic acid (15). Their physical properties were investigated. All of our compounds possess 1,3-cyclohexdiene conjugated units as the skeleton and enhance their structure stability. According to the information we obtained, more related compounds and their application could be further developed.
All of these compounds were characterized by UV/VIS spectrophotometer, fluorescence spectrophotometer and cyclic voltammetry. The photoconversion and incident photo-to-current efficiencies of these compounds were inspected using the AM 1.5 simulated solar light and irradiation of monochromic light system.
第四章 參考文獻
1. 何偑芬, “台灣風力發展的現況與展望”, 能源報導, 2005.
2. 陳宏仁, “有機太陽能電池之發展現況”, 工業材料雜誌, 2002, 190, 102-113.
3. 莊嘉琛編著, “太陽能工程-太陽電池篇”, 全華科技圖書, 2005.
4. Grätzel, M. Nature 2001, 414, 338-344.
5. Grätzel, M. Nature 2000, 403, 363.
6. 查丁壬彙編, “認識太陽能電池”, 中華太陽能聯誼會, 2003.
7. 鍾松正, “無機奈米半導體粒子的應用”, 奈米科技專刊, 2002.
8. 郭明村, ”薄膜太陽能電池發展近況”, 工業材料雜誌, 2003, 203, 138-149.
9. Grätzel, M. J. Photochem. Photobio. B 2003, 4, 145-153.
10. Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y. Sol. Energy. Mater. Sol. Cells 2006, 90, 549-573.
11. 沈偉韌,趙文寬,賀飛,方佑齡, “TiO2光催化反應及其在廢水處理中的應用”, 化學進展 1998, 4.
12. Fox, M. A.; Dulay, M. Y. Chem. Rev. 1993, 93, 341-357.
13. Linsebigler, A. L.; Lu G.; Yates, J. T. Chem. Rev. 1995, 95, 735-758.
14. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69-96.
15. Serp, P.; Kalck, P.; Feurer, R. Chem. Rev. 2002, 102, 3085-3128.
16. Iuchi, K. I.; Ohko, T.; Tatsuma, T.; Fujishima, A. Chem. Mater. 2004, 16, 1165-1167.
17. Fujishima, A.; Rao, T. N.; Tryk, D. A. Journal of Photochemistry and Photobiology C:Photochemistry Rev. 2000, 1, 1-21.
18. Ohko, Y.; Hashimoto, K.; Fujishima, A. J. Phys. Chem. A 1997, 101, 8057-8062.
19. Sadeghi, M.; Liu, W.; Zhang, T. G.; Stavropoulos, P.; Levy, B. J. Phys. Chem. 1996, 100, 19466 –19474.
20. Cho, M.; Chung, H.; Choi, W.; Yoon, J. Water Res. 2004, 38, 1069-1077.
21. Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505-516.
22. Hurd, F.; Livingston, R. J. Phys. Chem. 1940, 44, 865-873.
23. Oster, G.; Bellin, J. S.; Kimball, R. W.; Schrader, M. E. J. Am. Chem. Soc. 1959, 81, 5095-5099.
24. Chaberek, S.; Shepp, A.; Allen, R. J. J. Phys. Chem. 1965, 69, 641-647.
25. Chaberek, S.; Shepp, A.; Allen, R. J. J. Phys. Chem. 1965, 69, 647-656.
26. Chaberek, S.; Shepp, A.; Allen, R. J. J. Phys. Chem. 1965, 69, 2834-2841.
27. Chaberek, S.; Shepp, A.; Allen, R. J. J. Phys. Chem. 1965, 69, 2842-2848.
28. Kearns, D. R.; Hollins, R. A.; Khan, A. U.; Chambers, R. W.; Radick, P. J. Am. Chem. Soc. 1967, 89, 5455-5456.
29. 萬海保,曹立新,王麗穎,曾廣賦,席時權, “染料敏化的TiO2米晶多孔膜的性質及其光電轉換” 化學通報, 1999, 6.
30. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402.
31. Regan, B. O.; Grätzel, M. Nature 1991, 353, 737-740.
32. Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49-68.
33. Grätzel, M. Cur. Opin. Colloid Interface Sci.e 1999, 4, 314-321.
34. Kalyanasundaram, K.; Grätzel, M. Coord. Chem. Rev. 1998, 77, 347-414.
35. Zhang, X. T.; Liu, H. W.; Taguchi, T.; Meng, Q. B.; Sato, Q; Fujishima, A. Sol. Energy. Mater. Sol. Cells 2004, 81, 197-203.
36. Cahen, D.; Hodes, G.; Gratzel, M.; Guillemoles, J. F.; Riess, I. J. Phys. Chem. B 2000, 104, 2053-2059.
37. Kazmerski, L. L. Renewable Sustainable Energy Rev. 1997, 1, 71-170.
38. Zaban, A.; Ferrere, S.; Gregg, B. A. J. Phys. Chem. B 1998, 102, 452-460.
39. Zaban, A.; Meier, A.; Gregg, B. A. J. Phys. Chem. B 1997, 101, 7985-7990.
40. Huang, S. Y.; Schichthorl, G.; Nozik, A. J.; Gratel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576-2582.
41. Nelson, J. J. Phys. Rev. B 1999, 59, 15374-15380.
42. Murakoshi, K.; Kano, G.; ada, Y.; Yanagida, S.; miyazaki, H.; Matsumoto, M.; Murasawa, S. J. Electroanal. Chem. 1995, 396, 27-34.
43. Pichot, F.; Gregg, B. A. J. Phys. Chem. B 2000, 104, 6-10.
44. Ferber, J.; Stangl, R.; Luther, J. Sol. Energy Mater. Sol. Cells 1998, 53, 29-54.
45. Nazeeruddin, M. K.; Kay, A; Rodicio, R.; Baker, R. H.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382-6390.
46. Brus, L. Phys. Rev. B 1996, 53, 4649-4656.
47. Bisquert, J. J. Phys. Chem. B 2002, 106, 325-333.
48. Gregg, B. A.; Fox, M. A.; Bard, A. J. J. Phys. Chem. 1990, 94, 1586-1598.
49. Sun, S. S.; Sariciftci, N. S.” Organic photovoltaics mechanisms, materials, and devices”, 2005.
50. Park, N. G.; Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2000, 104, 8989-8994.
51. Park, N. G.; Schlichthorl, G.; Lagemaat, J.; Cheong, H. M.; Mascatenhas, A.; Frank, A. J. J. Phys. Chem. B 1999, 103, 3308-3314.
52. Ito, S.; Kitamura, T., Yuji, W.; Yanagida, S. Sol. Energy Mater. Sol. Cells 2003, 76, 3-13.
53. Nakade, S.; Matsuda, M.; Kambe, S.; Saito, Y.; Kitamura, T.; Sakata, T.; Wada, Y; Mori, H.; Yanagida, S. J. Phys. Chem. B 2002, 106, 10004-10010.
54. Hoyer, P.; Weller, H. J. Phys. Chem. 1995, 99, 14096-14100.
55. Deeming, A. J.; Forth, C. S.; Hogarth, G.; Markham, D.; Prince, J. O.; Steed, J. W. Chem. Comm. 2000, 2231-2232.
56. Lenzmann, F.; Krueger, J.; Burnside, S.; Brooks, K.; Grätzel, M.; Gal, D.; Rühle, S.; Cahen, D. J. Phys. Chem. B 2001, 105, 6347-6352.
57. Diamant, Y.; Chen, S. G.; Melamed, O. Zaban, A. J. Phys. Chem. B 2003, 107, 1977-1981.
58. Hara, K.; Sato, T.; Katon, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597-606.
59. Hara, K.; Wang, Z. S.; Sato, T.; Furubem, A.; Katoh, R.; Sugihara, H.; Yasufumi, D. O.; Kasada, C.; Shinpo, A.; Suga, S. J. Phys. Chem. B 2005, 109, 15476-15482.
60. Pettersson, H.; Gruszecki, T. Sol. Energy Mater. Sol. Cells 2001, 70, 203-212.
61. Regan B. O.; Schwartz, D. T. Chem. Mater. 1995, 7, 1349-1354.
62. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M. Nature Mater. 2003, 2, 402-407.
63. Tan, S.; Zhai, J.; Xue, B.; Wan, M.; Meng, Q.; Jiang, L.; Zhu, D. Langmuir 2004, 20, 2934-2937.
64. Pradhan, B.; Pal, A. J. Sol. Energy Mater. Sol. Cells 2004, 81, 469-476.
65. Gebeyehu, D.; Brabec, C. J.; Sariciftci, N. S. Thin Solid Films 2002, 403-404, 271-274.
66. Kitamura, T.; Ikeda, M.; Shigali, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S. Chem. Mater. 2004, 16, 1806-1812.
67 Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.; Suge, S.; Arakawa, H. Adv. Funct. Mater. 2005, 15, 246-252.
68. Wang, X. M.; Zhou, Y. F. J. Mater. Chem. 2000, 10, 2698-2703.
69. Bhosale, R. S.; Bhosale, S. V.; Wang T.; Zubaidha, P. K. Tetradron Lett. 2004, 45, 7187-7188.
70. Staub, K.; Levina, G. A. J. Mater. Chem, 2003, 13, 825-833.
71. Podraza, K. F.; Bassfield, R. L. J. Org. Chem. 1989, 54, 5919-5922.
72. Vans, D. A.; Nelson, J. V. J. Am. Chem. Soc. 1980, 102, 774-782.
73. Taschner, M. J.; Cyr, P. T. Tetrahedron Lett. 1990, 31, 5297-5300.
74. Huang Q.; Evmenenko, G.; Dutta, P.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14704-14705.
75. Zhang Q.; Chen, J. J. Mater. Chem. 2004, 14, 895-900
76. Huang, C. Y.; Hsu, Y. C.; Chen, J. G.; Suryanarayanan, V.; lee, K. M.; Ho, K. C. Sol. Energy. Mater. Sol. Cells 2006, ASAP.