Basic Search / Detailed Display

Author: 李奐亭
Hvan-Tine Lee
Thesis Title: 分波多工與極化鍵控光通訊系統之偏極補償研究
Study of Polarization Compensation in the WDM/PolSK System
Advisor: 曹士林
Tsao, Shyh-Lin
Degree: 碩士
Master
Department: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
Thesis Publication Year: 2006
Academic Year: 94
Language: 英文
Number of pages: 136
Keywords (in Chinese): 極化鍵控偏極補償
Keywords (in English): PolSK, Polarization Compensation
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 257Downloads: 6
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 我們利用共振腔原理設計了一個非對稱性之共振腔體, 產生一極為純的單模雷射, 並利用此雷射做不同的分析。藉由調控電光交換器的偏壓電壓來改變此腔體雷射之狀態並找出最佳的工作點進行遠距離傳輸實驗。我們利用壓電材料來改變光的極化狀態進行調變並利用自製的補償器進行補償。由於傳送於光纖中的光訊號易受外界各種的環境因素而改變其偏振的方向因而影響其極化率及橢圓率。但由實驗結果可知,我們的補償器可降低光在傳輸時其極化狀態所受到外在環境的影響並有效提高極化率至87.8%;並降低其橢圓變化率至3.31°。由此可知我們的補償器可實際應用在各種傳輸的補償中,進而提高傳輸品質降低誤碼率。
    此自製之極化補償器是利用程式自動偵測偏極態方向迴授給單晶片判讀,再由單晶片發出控制訊號精確的將偏極態的方向矯正至原來期望的設定值,讓偏極態不會任意的隨著環境因素而無時無刻的改變其偏態的方向,而影響到光纖的傳輸品質。在此實驗研究中我們知道在補償的過程中因傳輸的延遲現象造成此補償電路無法對訊號進行即時的補償。因此在此實驗研究中我們完成了電路的設計,製作,修改及基礎量測與分析,由量測結果可知,迴授訊號經過個個電路分別所造成的延遲現象以及電路特性﹔進而獲知設計電路板的大小(佈線路徑)以及連接電路板間的排線長度都會影顯延遲時間的長短。為此我們反覆實驗,終於將第一代的極化控制電路進行改良, 不但大幅縮小電路體積﹔並改善造成延遲因素,使迴授速度加快以提昇補償效果。
    若在未來的發展中,可將整個控制電路IC化並實際應用於儀器成品中,不但可精簡體積,更可大量的應用於現今的高速光纖網路,以提高網路傳輸的品質,來符合現今高速光纖網路的需求。此一構思將為未來發展趨勢不可或缺的一環。

    We use the theorem of resonator to design an asymmetrical resonator, produce a very pure signal mode laser, and make different analysis using this signal mode laser. From modulating the bias voltage of electro-optic switch to changing the state of cavity laser and find the optimum work point to make the experiment of transmission compensated. We utilize PZT to modulate the polarization state of cavity laser and use homemade compensator to compensate. Because the polarization state of the light in the optical fiber is easily changed due to many factors in various environments. Therefore, the ellipticity and DOP also be influenced. But form our experimental results, we know our compensator can reduce the variation of polarization state, is influenced by the environment on the transmission system. And promote the DOP to 84.92%, reduce the variation range of ellipticity to 3.21°. Therefore, we know that our compensator can be applied on various transmission systems and improve the transmission quality, reduce bit error ratio.

    Our homemade compensator is utilizing the program to scout the orientation of polarization state and feedback control by the program. Then it send out the control signal to correct the polarization station go to the set position of our expectation and let polarization state not changed arbitrarily by the factor of environment, incessantly and influence the transmission quality on the optical transmission system. From study of this experiment, we know that in the process of compensation will cause the transmission delay, so the compensator should not compensate the transmission signal, immediately. In this thesis, we finish the design, measure and analyze of this compensator circuit. From measure result, we should understand the phenomenon of delay while feedback pass through each circuit and some characters of those circuits. We obtain the size of designed circuit (wiring rout) and the length of the data bus should influence the delay time. The first generation compensator eventually ameliorated, we successful reduce the size of our compensator and improve the factors of causing the transmission delay after experimenting repeatedly. However, the feedback speed can be quickened and raise the compensation result after improving those factors.

    In the future we can let all circuit became to integrated circuit (IC) and applied it on the instrument. Not only simplify the size, but also a great deal of applied it on the high-speed optic network. It can promote the transmission quality and conform to need in the nowadays network.

    Chinese Abstract.........................................i English Abstract.........................................iii Acknowledgment...........................................v Contents.................................................vi List of Figures..........................................ix Chapter 1 Introduction...................................1 Chapter 2 4-Channel WDM Laser............................7 2-1 The Structure of the Asymmetrical Resonator Laser....................................................7 2-2 Theory of General Laser Resonance....................8 2-2-1 E-Field Modes of Asymmetrical Cavity...............9 2-2-2 Numerical Results of our Asymmetrical Resonator....13 2-3 The Various Characteristics of Modulate the Electro-Optical Coupler..........................................14 2-3-1 Modulate Bias Voltage to Analyze the Variation of the Laser and Noise Spectrum.................................14 2-3-2 Analysis L-I Curve with Different Coupling Ratio in Our Experimental System..................................17 2-3-3 Analyzing the Stability and the Variation of Our CW Laser19..................................................19 2-4 Analyzing the Polarization State of Modulate the Bias Voltage of E/O Switch....................................20 2-5 Summary..............................................22 Chapter 3 Improve the Homemade Compensator and Analysis the Response Time............................................41 3-1 The Structure of Our PMD Compensator.................42 3-2 Describe the Transform of Signal in the Feedback Circuit .................................................43 3-2-1 The Basic Characteristic of the feedback circuit...44 3-2-2 The Basic Characteristic of the Control circuit....45 3-3 Analysis of the Delay Time of Our Compensator System.47 3-3-1 The Static Measuring about Delay Phenomenon of PMD Compensator..............................................47 3-3-1-1 The Transmission Delay in the Feedback Circuit...47 3-3-1-2 The Transmission Delay in the Control Circuit....48 3-3-2 Analysis of the Delay Time of Each Component in the Feedback Circuit.........................................51 3-4 The Dynamic Measuring about Delay Phenomenon of Our Compensation system......................................53 3-5 Summary..............................................56 Chapter 4 WDM/PolSK Fiber Communication System...........82 4-1 Introduction.........................................83 4-2 Using PZT to modulated the polarization state of our WDM system...............................................85 4-3 The experimental result of WDM Polarization Shift Keying in 100 Transmission System........................87 4-4 SummaryChapter 4 WDM/PolSK Fiber Communication System92 Chapter 5 Conclusions...................................120 References..............................................123 Publication List.......................................xvii

    [1] L. Talaverano, S. Abad, S. Jarabo, M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” Journal of Lightwave Technology, vol.19, pp.553-558, 2001.
    [2] D.N. Wang, F.W. Tong, Xiaohui Fang W. Jin, P.K.A. Wai, J.M. Gong, “Multiwavelength fiber laser source with a hybrid gain medium,” Conference on Lasers and Electro-Optics, pp.1614-1618, 2003.
    [3] Y. Zhao, C. Shu, S.P. Li, H. Ding, K.T. Chan, “Multiple wavelength operation of a unidirectional Er-doped fiber ring laser with optical feedback,” Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, vol.11, pp.396-396, 1997.
    [4] Jianliang Yang, Swee Chuan Tjin, Nam Quoc Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technology Letters, vol.16, pp.1026-1028, 2004
    [5] E. Desurvire, J.L. Zyskind, J.R. Simpson, “Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photonics Technology Letters, vol.2, pp.246-248, 1990.
    [6] Shenping Li, Kam Tai Chan, “A novel configuration for multiwavelength actively mode-locked fiber lasers using cascaded fiber Bragg gratings,” IEEE Photonics Technology Letters, vol.11, pp.179-181, 1999.
    [7] R. Chen, G.E. Town, P.-Y. Cortes, S. LaRochelle, P.W.E. Smith, “Dual-wavelength, actively mode-locked fibre laser with 0.7 nm wavelength spacing,” Electronics Letters, vol.36, pp.1921-1923, 2000.
    [8] O. Deparis, R. Kiyan, E. Salik, D. Starodubov, J. Feinberg, O. Pottiez, P. Megret, M. Blondel, ”Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings,” IEEE Photonics Technology Letters, vol.11, pp.1238-1240, 1999.
    [9] L. Talaverano, S. Abad, S. Jarabo, M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” Journal of Lightwave Technology, vol.19,pp.553-558, 2001.
    [10] Peng-Chun Peng, Hong-Yih Tseng, Sien Chi, “Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme,” IEEE Photonics Technology Letters, vol.16, pp.575-577, 2004.
    [11] I.H. White, K.O. Nyairo, P.A. Kirkby, C.J. Armistead,” Demonstration of a 1×2 multichannel grating cavity laser for wavelength division multiplexing (WDM) application,” Electronics Letters, vol.26, pp.832-834, 1990.
    [12] I.H. White, K. Nyairo, J.E. Carroll, P.A. Kirkby, C.J. Armistead, “Demonstration of a two wavelength multichannel grating cavity laser,” emiconductor Laser Conference, pp.210-211, 1990.
    [13] S.Yamashita, K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electronics Letters, vol.32, pp.1298-1299, 1996.
    [14] Y.Z. Xu, H.Y. Tam, W.C. Du, M.S. Demokan, “Tunable dual-wavelength-switching fiber grating laser,” IEEE Photonics Technology Letters, vol.10, pp.334-336, 1998.
    [15] J.Chow, G.Town, B. Eggleton, M. Ibsen, K. Sugden, I. Bennion,“Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technology Letters, vol.8, pp.60-60, 1996.
    [16] S. Xuewen, J. Shan, H. Dexiu, “Fiber grating Sagnac loop and its multiwavelength-laser application,” IEEE Photonics Technology Letters, vol.12, pp.980-982, 2000.
    [17] Q.Mao, J.W.Y.Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technology Letters, vol.14, pp.612-614, 2002.
    [18] N. Park, P.F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photonics Technology Letters, vol.8, pp.1459-1461, 1996.
    [19] L.R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror,” IEEE Photonics Technology Letters, vol.16, pp.410-412, 2004.

    [20] A. Bellemare, M. Karasek, M. Rochette, S. LRochelle, M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” Journal of Lightwave Technology, vol.18, pp.825-831, 2000.
    [21] O. Graydon, W.H. Loh, R.I. Laming, L.Dong, “Triple-frequency operation of an Er-doped twincore fiber loop laser,” IEEE Photonics Technology Letters, vol.8, pp.63-65, 1996.
    [22] H. Okamura, K. Iwatsuki, “Simultaneous oscillation of wavelength-tunable, singlemode lasers using an Er-doped fibre amplifier,” Electronics Letters, vol.28, pp.461-463, 1992.
    [23] S.V. Chernikov, R. Kashyap, P.F. McKee, J.R.Taylor, “Dual frequency all fibre grating laser source,” Electronics Letters , vol.29, pp.1089-1091, 1993.
    [24] S.V. Chernikov, J.R. Taylor, R. Kashyap , “Coupled-cavity erbium fiber lasers incorporating fiber grating reflectors,” Opt. Letter, pp.2023-2025, 1993.
    [25] T. Komukai, M. Nakazawa, “Tunable single frequency erbium doped fiber ring lasers using fiber grating etalons,” Jpn. J Appl. Phys. pp.679-680, 1995
    [26] J. F. Lemieux et al., “Set –tunable (100GHZ) hybrid laser based on vernier effect between Fabry-Perot cavity and sampled fiber Bragg grating”, Electronics Letters, vol.35, no.11, 1999.
    [27] D. M. Brid et al., “Narrow line semiconductor laser using fiber grating”, Electronics Letters, vol. 27, no.13, pp.1115~1116. 1991.
    [28] R. Paoletti et al., “15-GHz Modulation bandwith, ultralow-chirp 1.55-μm directly modulated hybrid distributed Bragg reflector (HDBR) laser source”, IEEE Photonics Technology Letters, vol.10, no.12, 1998.
    [29] T. Takagi, T. Kato, G. Sasaki, A. Miki, S. Inano, K. Iwai, A. Hamakawa, M. Shigehara, “Fiber-grating external-cavity laser diode module for 2.5 Gb/s dense WDM transmission”, Conference on Optical Communication, vol.1, pp.81-82, 1998.
    [30] R. J. Campbell et al., “Wavelength stable uncooled fiber grating semiconductor laser for use in an all optical WDM access network”, Electron Letter, vol.32, pp.119-120, 1996.
    [31] F.N. Timofeev et al., “Experimental and theoretical study of high temperature-stablility and low-dhirp 1.55 micron semiconductor laser with an external fiber grating”, Fiber & Integrated Optics, vol.19, pp.327-354, 2000.
    [32] J. Hashimoto et al., “Coaxial fiber-Bragg-grating external cavity semiconductor laser module without temperature control”, in Proc. ECOC2001, vol.2, pp.130-131, 2001.
    [33] T. Tanaka et al,. “Hybrid integrated external cavity laser without temperature dependent mode hopping”, Electron Letter, volo.35, no.2, pp.149-150, 1999.
    [34] T. Sato, F. Yamaoto, K. Tsuji, H. Takesue, T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems”, IEEE Photonics Technology Letters, vol.17, pp.1001-1003, 2002.
    [35] C. Francia, F. Bruyere, D. Pennickx, and M. Chbat, “PMD second-order effect on pulse propagation in signal-mode optical fibers,” IEEE Photon, Tech. Lett. 10, pp.1739-1741, 1998.
    [36] B. W. Hakki, ”Polarization mode dispersion compensation by phase diversity,” IEEE Photon. Technol. Lett., vol. 9, pp. 121-123, 1997.
    [37] R. No, D. Sandel, M. Yoshida-Dierolf, S. Hinz. V. Mirvoda, A. Schpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, “ Polarization mode dispersion compensation at10, 20, and 40 Gb/s with various optical equalizers,” J. Lightwave Technology 17, pp.1602-1616, 1999.
    [38] G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnick, “ Probability densities of second order PMD including polarization dependent chromatic dispersion,” IEEE Photon. Technol. Lett.12. pp.293-295, 2000.
    [39] R. Khosravani, S. A. Havstad, T. W. Song. P. Ebrahimi, and A.E. Willner, “ Polarization mode dispersion compensation in WDM system,” IEEE Photon. Technol. Lett.13, pp.1370-1372, 2001.
    [40] C.D. Poole, R. W. Tkach. A.R. Chraplyvy, and D.A. Fishman, “ Fading in lightwave system due to polarization mode dispersion,” IEEE Photon. Technol. Lett.3. pp.68-70, 1991.
    [41] C.D. Poole and T.E. Darcie, “ Distortion related to polarization mode dispersion in analogue lightwave systems, ” J. Lightwave Technol, 11.pp. 1749-1759, 1993.
    [42] Y. Namihara, T. Kawazawa, and H. Taga, “Polarization effects on BER
    degradation at 10Gb/s in IM-DD 1520km optical amplifier system,” Electron, Lett. 29. pp.1654-1655, 1993
    [43] R. Khosravani, I.T. Lima, Jr. P. Ebrahimi, E. Ibragimove, A.E. Willner, and C.R. Menyuk, “ Time and frequency domain characteristics of polarization mode dispersion emulator,” IEEE Photon. Technol. Lett. 13, pp.127-129, 2001.
    [44] M. Fontaine, B. Wu, V.P. Tzolov, W.J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers”, Journal of Lightwave Technology, vol.14, pp.585-591, 1996.
    [45] D. Payne, A. Barlow, J. Hansen, “ Development of low- and high-birefringence optical fibers”, IEEE Journal of Quantum Electronics, vol.18, pp.477-488, 1982.
    [46] B. Wiltshire, M.H. Reeve, “A review of the environmental factors affecting optical cable design”, Journal of Lightwave Technology, vol.6, pp.179-185, 1988.
    [47] L. Yong Wook, Y. Il Yong, L. Byoungho, “Pulse distortion in single-mode fiber due to bending-induced polarization mode dispersion and polarization dependent loss”, LEOS2001, vol.1, pp.20-21, 2001.
    [48] J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, R. Howard, “A single-polarization fiber”, Journal of Lightwave Technology, vol.1, pp.370-374, 1983.
    [49] B.W. Hakki, “Polarization mode dispersion in a single mode fiber”, Journal of Lightwave Technology, vol.14, pp.2202-2208, 1996.
    [50] D. G. Falquier, M. J. F. Digonnet, H. J. Shaw, “A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability”, IEEE Photonics Technology Letters, vol.13, pp.25-27, 2001.
    [51] M. C. de Lignie, H. G. J. Nagel, and M. O. van Deventer, “Large polarization mode dispersion in fiber optic cables,” IEEE Journal Lightwave Technology, vol. 12, pp. 1325-1329, Aug. 1994.
    [52] J.W. Berthold, W. L. Ghering and D. Varshneya, “Design and characterization of a high temperature fiber-optical preasure transducer,” Journal of Lightwave Technology, vol. 5, no. 7, pp. 870-875, 1987.
    [53] Toshinao Yuki, Kazuhisa Shida, Tomonori Koda and Susumu Ikeda, “Polarization Reversal of aliphatic polyurethane above the glass transition temperature,” IEEE Photonics Technology Letters, pp. 675-677, 1999
    [54] D.Chowdhury, “PMD induced system impairments in long-haul optical communication system”, LEOS99, vol.1, pp.147-148, 1999.
    [55] R.Caponi, B. Riposati, A. Rossaro, M. Schiano, “WDM design issues with highly correlated PMD spectra of buried optical cables”, Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002, pp.453-455, 2002.
    [56] S. M. R. M. Nezam, J. E. McGeehan, A. E. Willner, “Theoretical and experimental analysis of the dependence of a signal's degree of polarization on the optical data spectrum”, Journal of Lightwave Technology, vol.22, pp.763-772, 2004.
    [57] J.C. Rasmussen, A. Isomura, G. Ishikawa, “Automatic compensation of polarization-mode dispersion for 40 Gb/s transmission systems”, Journal of Lightwave Technology, vol.20, pp.2101-2109, 2002.
    [58] Jens Kissing, T. Gravemann, E. Voges, “Analytical probability density function for the Q factor due to PMD and noise”, IEEE Photonics Technology Letters, vol.15, pp.611-613, 2003.
    [59] A. Galtarossa, L. Palmieri, A. Pizzinat, “Optimized spinning design for low PMD fibers: an analytical approach”, Journal of Lightwave Technology, vol.19, pp.1520-1512, 2001.
    [60] H. Kogelnik, L.E. Nelson, R.M. Jopson, “Tutorial: polarization mode dispersion impairment in lightwave transmission systems”, Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002, pp.194, 2002.
    [61] S. Sarkimukka, A. Djupsjobacka, A. Gavler, G.Jacobsen, “Mitigation of polarization-mode dispersion in optical multichannel systems,” Journal of Lightwave Technology, vol.18, pp.1374-1380, 2000.
    [62] R. Khosravani, S.A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization mode dispersion compensation in WDM systems,” IEEE Photon. Technol. Letter, vol.13, pp.1370-1372, 2001.
    [63] L. Moller and H. Sinsky, “ Time-sharing of compensators as a PMD mitigation approach for multichannel transmission systems,” IEEE Photon. Technol. Letter, vol.14, pp.861-863, 2002.

    [64] W. Zhang, J.A.R. Williams, L. Zhang, I. Bennion,” Optical fiber grating based Fabry-Perot resonator for microwave signal processing”, Conference on Lasers and Electro-Optics, pp.330-331, 2000.
    [65] Y.Z. Xu, H.Y. Tam, W.C. Du, M.S. Demokan, “Tunable dual-wavelength-switching fiber grating laser”, IEEE Photonics Technology Letters, vol.10, pp.334-336, 1998.
    [66] J.E. Sipe, L. Ramunno, “Analysis of fiber-grating-coupled semiconductor lasers for WDM applications”, Conference on Optical Fiber Communication. pp.32, 1997.
    [67] B.Pezeshki, G.W. Yoffe, V. Agrawal, M. Hagberg, S. Zou, “633 nm fiber grating-stabilized diode laser”, IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting LEOS '99., vol.1, pp.333-334, 1999.
    [68] Shyh-Lin Tsao, Shien-Cheng Chiou, Che-Yuan Hsu, “Implementation of a high bandwidth fiber ring laser for subcarrier microwave communications”, Microwave Conference, vol.1, pp.342-345, 2001.
    [69] S.L. Zhang, P.M. Lane,J.J. O'Reilly, “Effect of EDFA ASE noise on the performance of millimetre-wave fibre radio communication systems”, Internatonal Topical Meeting on Microwave Photonics, pp.149-152, 1996.
    [70] G. Kats, D. Sadot, “ASE noise reduced optical receiver based on MZI diversity scheme”, LEOS 2000, vol.2, pp.411-412, 2000.
    [71] M.I. Hayee, A.E. Willner, “Fiber transmission penalties due to EDFA power transients resulting from fiber nonlinearity and ASE noise in add/drop multiplexed WDM networks”, Optical Fiber Communication Conference, vol.3, pp.307-309, 1999.
    [72] B. Pal, R. Gangopadhyay, S.P. Majumder, “Sensitivity penalty evaluation for a CPFSK transmission system impaired by GVD, SPM and ASE noise”, Lasers and Electro-Optics Society Annual Meeting, vol.1, pp.307-308, 1998.
    [73] I. Roudas, N. Antoniades, R.E. Wagner, S.F. Habiby, T.E. Stern, “Influence of filtered ASE noise and optical filter shape on the performance of a WADM cascade”, Integrated Optics and Optical Fibre Communications, vol.2, pp.143-146, 1997.
    [74] J. Ing-Fa, L. San-Liang, W. Chi-Yu, L. Lih-Wen, H. Wen-Jeng, “Integrated DWDM laser arrays with stable and high-SMSR wavelengths”, The 4th Pacific Rim Conference on Lasers and Electro-Optics, vol.2, pp. II-52 - II-53, 2001.
    [75] R. No, D. Sandel. M. Y-Dieroif, S. Hinz, V. Mivoda, A. Schopfin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, “Polarization mode dispersion compensation at 10, 20, and 40 Gbit/s with various optical equalizers”, Journal of Lightwave Technology, vol.17, pp.1602-1616, 1999.
    [76] L. Tain-Syh, H. Yuan-Yih, G. Tzong-Yih, L. Jiann-Tyng, H. Chiung-Yi , “ Application of thyristor-controlled series compensators to enhance oscillatory stability and transmission capability of a longitudinal power system”, IEEE Transactions on Power Systems, vol.14, pp. 179 – 185, 1999.
    [77] R.I. Killey, V. Mikhailov, S. Appathurai, P. Bayvel, “Investigation of nonlinear distortion in 40-Gb/s transmission with higher order mode fiber dispersion compensators”, Journal of Lightwave Technology, vol.20, pp.2282-2289, 2002.
    [78] S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, R.G. Huff, L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000-km transmission at 40 Gb/s”, IEEE Photonics Technology Letters, vol.13, pp.632-634, 2001.
    [79] K. Na Young, L. Duckey, Y. Hosung, P. Namkyoo, “Analysis on the limitation of PMD compensator in the 10 Gbps transmission system with polarization dependent loss”, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001, vol.3, pp.1-4, 2001.
    [80] H. Takenouchi, T. Goh, T. Ishii, “2/spl times/40-channel dispersion-slope compensator for 40-Gbit/s WDM transmission systems covering entire C- and L-bands”, Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001, vol.2, pp.1-3, 2001.
    [81] W.H. Loh, R.I. Laming, A.D. Ellis, D. Atkinson, “10 Gbit/s transmission over 700 km of standard single mode fibre with a 10 cm chirped fibre grating compensator and duobinary transmitter”, IEE Colloquium on High Speed and Long Distance Optical Transmission, vol.18, pp.1-6, 1996.
    [82] I. Seto, T. Ohtsuki, H. Yashima, I. Sasase, S. Mori, “Polarization state and phase noise insensitive POLSK phase-diversity homodyne system in coherent optical communications”, IEEE International Conference on Communications, vol.2, pp.743-747, 1992.
    [83] M. Tseytlin, O. Ritterbush, A. Salamon, “Digital, endless polarization control for polarization multiplexed fiber-optic communications”, OFC 2003, vol.1, pp.103, 2003
    [84] F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems”, Journal of Lightwave Technology, vol.12, pp.690-699, 1994.
    [85] S.Benedetto, P. Poggiolini, “Theory of polarization shift keying modulation”, IEEE Transactions on Communications, vol.40, pp.708-721, 1992.
    [86] L. Yan, M.C. Hauer, Y. Shi, X.S. Yao, P. Ebrahimi, Y. Wang, A.E. Willner, W.L. Kath, “Polarization-mode-dispersion (PMD) emulator using variable differential-Group-delay (DGD) elements and its use for experimental importance sampling”, Journal of Lightwave Technology, vol.22, pp.1051-1058, 2004.
    [87] L.S. Yan, M. Hauer, A.E. Willner, Y. Shi, X. Yao, W.L. Kath, “Experimental importance sampling using a 3-section PMD emulator with programmable DGD elements”, OFC2003, pp.421-422, 2003.
    [88] S.M.R. Motaghian Nezam, J.E. McGeehan, A.E. Willner, “Measurement of link DGD without polarization scrambling using the degree of polarization and symmetric/asymmetric partial optical filtering”, LEOS 2003, vol.2, pp.915-916, 2003.
    [89] S.M.R.M. Nezam, L.-S. Yan, Y.Q. Shi, A.E. Willner, S. Yao, “Wide-dynamic-range DGD monitoring by partial optical signal spectrum DOP measurement”, OFC 2002, vol.17-22, pp.1-5, 2002.
    [90] A.O. Dal Forno, A. Paradisi, F.S. Viana, R. Passy, J.P. von der Weld, “Statistical analysis of DGD in PMD emulators with random mode-coupling lengths”, Microwave and Optoelectronics Conference, vol.2, pp.458-461, 1999.
    [91] M. Boroditsky, M. Brodsky, N.J. Frigo, P. Magill, M. Shtaif, “Improving the accuracy of mean DGD estimates by analysis of second-order PMD statistics”, IEEE Photonics Technology Letters, vol.16, pp.792-794, 2004.
    [92] S.A. Jacobs, J.J. Refi, R.E. Fangmann, “Statistical estimation of PMD coefficients for system design”, Electronics Letters, vol.33, pp.619-621, 1997.
    [93] N. Cyr, “Polarization-mode dispersion measurement: generalization of the interferometric method to any coupling regime”, Journal of Lightwave Technology, vol.22, pp.794-805, 2004.
    [94] M. Karlsson, “Probability density functions of the differential group delay in optical fiber communication systems”, Journal of Lightwave Technology, vol.19, pp.324-331, 2001.
    [95] L.E. Nelson, R.M. Jopson, H. Kogelnik, G.J. Foschini, “Measurement of depolarization and scaling associated with second-order polarization mode dispersion in optical fibers”, IEEE Photonics Technology Letters, vol.11, pp. 1614 – 1616, 1999.
    [96] N. Kaneda, Liu Xiang, Zheng Zheng, Wei Xing, M. Tayahi, M. Movassaghi, D. Levy, “Improved polarization-mode-dispersion tolerance in duobinary transmission”, IEEE Photonics Technology Letters, vol.15, pp.1005-1007, 2003.
    [97] Keang-Po Ho, Lin Chinlon, “Performance analysis of optical transmission system with polarization-mode dispersion and forward error correction”, IEEE Photonics Technology Letters, vol.9, pp.1288-1290, 1997.
    [98] S.P. Majumder, M.Z. Yusoff, A.F. Muhammad, H.T. Chuah, “Effect of polarization mode dispersion on optical heterodyne CPFSK system”, GLOBECOM 2000, vol.2, pp.1233-1236, 2000.
    [99] X. Wei, A.H. Gnauck, D.M. Gill, X. Liu, U.-V. Koc, S. Chandrasekhar, G. Raybon, J. Leuthold, “Optical /spl pi//2-DPSK and its tolerance to filtering and polarization-mode dispersion”, IEEE Photonics Technology Letters, vol.15, pp.1639-1641, 2003.
    [100] S.J. Savory, F.P. Payne, “Pulse propagation in fibers with polarization-mode dispersion”, Journal of Lightwave Technology, vol.19, pp.350-357, 2001.
    [101] S. Hadjifaradji, Chen Liang, Bao Xiaoyi, “Eye diagram evaluation in single mode fibers having polarization mode dispersion, polarization dependent loss and chromatic dispersion”, 2003 Digest of the LEOS Summer Topical Meetings ,vol.14-16, pp.53-54, 2003.
    [102] C.-J. Chen, “System impairment due to polarization mode dispersion”, Optical Fiber Communication Conference, vol.2, pp.77-79, 1999.
    [103] C.R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, E. Chen, “ Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity”, IEEE Photonics Technology Letters, vol.16, pp.1340-1342, 2004.
    [142] S. Lanne, E. Corbel, “ Practical considerations for optical polarization-mode dispersion compensators”, Journal of Lightwave Technology, vol.22, pp.1033-1040, 2004.
    [105] D. Alzetta, M. Matsumoto, “Location optimization and distribution of polarization-mode dispersion compensators using polarizers”, Journal of Lightwave Technology, vol.22, pp.1014-1022, 2004.
    [106] Z. Yuan, Y. Bo-jun, Z. Xiao-guang, “Three-stage polarization mode dispersion compensator capable of compensating second-order polarization mode dispersion”, IEEE Photonics Technology Letters, vol.14, pp.1412-1414, 2002.
    [107] T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata, K. Okamoto, “Planar lightwave circuit polarization-mode dispersion compensator”, IEEE Photonics Technology Letters, vol.14, pp.507-509, 2002.
    [108] J.N. Damask, “A programmable polarization-mode dispersion emulator for systematic testing of 10 Gb/s PMD compensators”, Optical Fiber Communication Conference, vol.3, pp.28-60, 2000.
    [109] E. Corbel, S. Lanne, J.-P. Thiery, “ Improvement of first-order optical PMD compensator by relevant control of input state of polarization”, OFC 2002, pp.301-302, 2002.
    [110] M. Karlsson, C. Xie, H. Sunnerud, P.A. Andrekson, “ Higher order polarization mode dispersion compensator with three degrees of freedom”, OFC 2001, vol.1, pp.1-3, 2001.
    [111] I. Riant, J. Gourhant, P. Sansonetti, “Polarization mode dispersion analysis in fibre chromatic dispersion compensators”, Conference on Integrated Optics and Optical Fiber Communication, vol.1, pp.269-271, 1999.
    [112] F. Roy, C. Francia, F. Bruyere, D. Penninckx, “A simple dynamic polarization mode dispersion compensator”, Optical Fiber Communication Conference, vol.1, pp.275-278, 1999.
    [113] S. Benedetto, P. Poggiolini, “Performance evaluation of multilevel polarisation shift keying modulation schemes”, Electronics Letters, vol.26, pp.244-246, 1990.
    [114] S. Benedetto, R. Gaudino, P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation”, IEEE Journal on Selected Areas in Communications, vol.13, pp.531-54

    QR CODE