Basic Search / Detailed Display

Author: 邱瑋文
Chiu, Wei-Wen
Thesis Title: 高溫超導量子干涉儀之磁粒子造影系統開發與特性研究
Development and Characteristic of high temperature SQUID based magnetic particle imaging system
Advisor: 廖書賢
Liao, Shu-Hsien
Degree: 碩士
Master
Department: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
Thesis Publication Year: 2019
Academic Year: 107
Language: 中文
Number of pages: 53
Keywords (in Chinese): 高溫超導量子干涉儀磁粒子造影系統磁性奈米粒子
Keywords (in English): High-Tc SQUID, MPI, MNPs
DOI URL: http://doi.org/10.6345/NTNU201900483
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 254Downloads: 0
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 在本研究在屏蔽屋內架設一套使用高溫超導量子干涉元件(High Temperature Superconducting Quantum Interference Devices, High-Tc SQUID)的磁粒子造影系統(Magnetic Particle Imaging, MPI)。因為High-Tc SQUID是一種靈敏度極高的磁力計,所以適合應用於微小磁性感測,量測在未來可被作為標靶顯影劑且生物相容性極高的奈米磁粒子。
    本系統具有極低之背景雜訊,在1 Hz與100 Hz時的系統雜訊頻譜分別為43.390 pT/Hz1/2與1.462 pT/√Hz1/2,並使用交流模式掃描樣品,最大掃描範圍為12 cm × 12 cm。系統最小樣品量測為0.031 M,100 µL。同時配合步進馬達來移動樣品來提升空間解析度,最後透過小範數估計法(Minimum-Norm Estimation, MNE)來重建樣品在空間中的分布,進一步再利用侷限座標法得到更貼近樣品形貌的重建影像。本研究並將磁粒子造影系統所量測到的功能性影像與磁振造影的結構性影像整合,驗證於磁性生醫影像應用的可行性。

    In this study, a magnetic particle imaging system (MPI) using High Temperature Superconducting Quantum Interference Devices (High-Tc SQUID) was installed in the shielded house. Because High-Tc SQUID is a highly sensitive magnetometer, it is suitable for small magnetic sensing, measuring nano magnetic particles that can be used as target developers in the future and have high biocompatibility.
    The system has extremely low background noise. The system noise spectrum at 1 Hz and 100 Hz is 43.390 pT /Hz1/2 and 1.462 pT /Hz1/2, respectively, and the sample is scanned using the AC measurement mode. At present, the limit of the system can detect sample concentration is 0.031 M, 100 μL .The maximum scan area is 12 cm × 12 cm, with a stepping motor to move the sample to improve the spatial resolution, and finally through the Mini-Norm Estimation (MNE) to reconstruct the distribution of the sample in space, and further use the constraint coordinate method calculate reconstructed image that is closer to the topography of the sample.
    In this study, the functional image measured by the magnetic particle imaging system was integrated with the structural image of the magnetic resonance imaging to verify the feasibility of the magnetic biomedical imaging application.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1.1研究動機 1 1.2磁粒子造影系統概述 2 第二章 實驗原理 5 2.1高溫超導量子干涉儀之原理 5 2.2 磁流體之樣品特性 6 2.3 交流磁化率(AC susceptibility)量測原理 9 2.4重建影像演算法 10 第三章 實驗方法與架構 13 3.1 系統整體概述 13 3.2 高溫超導磁粒子造影硬體系統 14 3.3 高溫超導磁粒子造影軟體系統 24 第四章 實驗結果與討論 32 4.1實驗系統特性量測結果 32 4.2樣品掃描與造影 36 4.3 MPI與MRI影像整合 40 4.4最小樣品量 46 第五章 結論 51 未來展望 51 參考資料 52

    [1] 楊謝樂,「磁性奈米粒子於生物醫學上之應用」,物理雙月刊,第二十八卷,第四期,2006。

    [2] 楊謝樂,「高靈敏度磁減量生醫檢測原理及應用」,台灣磁性技術協會會訊,第 51 期,2010。

    [3] Gleich, B. and R. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles. Nature, 2005. 435(7046): p. 1214-1217.

    [4] 蔡牧修(2016)。《大面積可調式多通道磁粒子造影系統架設與特性研究》。國立台灣師範大學光電科技研究所碩士論文,未出版,台北。

    [5] 童元甫(2018)。《多通道陣列式磁粒子造影系統開發與特性研究應用於生物影像》。國立台灣師範大學光電科技研究所碩士論文,未出版,台北。

    [6] 陳昭翰,「超導量子干涉元件發展的回顧與展望」,台灣磁性技術協會會訊,第 51 期,2010。

    [7] Wang, J.Z., S.J. Williamson, and L. Kaufman, MAGNETIC SOURCEIMAGES DETERMINED BY A LEAD-FIELD ANALYSIS - THE UNIQUE MINIMUM-NORM LEAST-SQUARES ESTIMATION. Ieee Transactions on Biomedical Engineering, 1992. 39(7): p.665-675.

    [8] S. Foner, digital Encyclopedia of Applied Physics, MEASUREMENT OF MAGNETIC PROPERTIES AND QUANTITIES”, WILEY-VCH Verlag GmbH & Co KGaA

    [9] [11]Goodwill, P. W., Scott, G. C., Stang, P. P., & Conolly, S. M. (2009). “Narrowband magnetic particle imaging.” Medical Imaging, IEEE Transactions on, 28(8),1231-1237.

    [10] ]Goodwill, Patrick W.,and Steven M. Conolly."The x-space formulation of the magnetic particle imaging process:1-D signal,resolution, bandwidth, SNR, SAR, and magnetostimulation." Medical Imaging, IEEE Transactions on 29.11 (2010): 1851-1859.

    [11] Goodwill, P. W., Tamrazian, A., Croft, L. R., Lu, C. D., Johnson, E.M.,Pidaparthi,R.,... & Conolly, S. M. (2011).“Ferrohydrodynamic relaxometry for magnetic particle imaging.” Applied Physics Letters, 98(26), 262502-262502.

    [12] Goodwill, P. W., & Conolly, S. M. (2011). “Multidimensional x-space magnetic particle imaging.”Medical Imaging,IEEE Transactions on, 30(9),1581-1590.

    [13] Goodwill, Patrick W., et al. "An x-space magnetic particle imaging scanner." Review of Scientific Instruments 83.3 (2012): 033708 033708.

    [14] Gleich, B., ... & Buzug, T. M. (2010). “Model-based reconstruction for magnetic particle imaging.”Medical Imaging, IEEE Transactions on,29(1),12-18.

    [15] Knopp,T.,Biederer,S.,Sattel,T.F.,Rahmer,J.,Weizenecker,J.,Gleich,B...,& Buzug, T.M. (2010).“2D model-based reconstruction for magnetic particle imaging.”Medical physics, 37,485

    無法下載圖示 This full text is not authorized to be published.
    QR CODE