Author: |
林玠嫺 chieh-hsien lin |
---|---|
Thesis Title: |
合成鐵鉑-半導體(II-VI)奈米複合材料及利用陽離子交換反應形成Type-II半導體之性質鑑定 Characterization and Synthesis of FePt- semiconductor (II-VI) hybrid nanostructures and Synthesis of Type-II semiconductor by Cation Exchange Reactions |
Advisor: |
陳家俊
Chen, Chia-Chun |
Degree: |
碩士 Master |
Department: |
化學系 Department of Chemistry |
Thesis Publication Year: | 2010 |
Academic Year: | 98 |
Language: | 中文 |
Number of pages: | 85 |
Keywords (in Chinese): | 複合材料 、半導體 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 85 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
在本篇論文中我們合成CdS與CdSe奈米棍,且控制 FePt 奈米粒子選擇性的在半導體的末端生長,合成出CdS-FePt 、CdSe-FePt 半導體奈米棒末端接磁性粒子的奈米複合材料,並且具有光學和磁性性質。在光學部分我們利用光激發光螢光光譜儀(PL)可得知當CdS、CdSe接上FePt奈米粒子後,由於Schottky barrier的關係會使電子產生轉移且無法再結合,導致其放光強度降低。而在磁性部分我們利用超導量子干涉儀(SQUID)得知材料為超順磁性且其飽和磁化率有下降的趨勢。之後還可加入Au奈米粒子合成CdS-FePt-Au、CdSe-FePt-Au這種具有多成分的奈米異質結構。利用穿透式電子顯微鏡(TEM)、能量分散光譜儀(EDS)、粉末X-ray繞射儀(XRD)、紫外光可見光光譜儀(UV-Visible)鑑定其尺寸、結構、元素組成。
此外,我們還利用合成出的CdS-FePt奈米複合材料,在室溫下進行離子交換反應,利用hard-soft acid-base (HSAB) 原理,使其在形狀不變的情況下經由置換反應形成具有不同結構的type-II半導體奈米複合材料,而且藉由控制加入Cu+離子的濃度,使得奈米複合棍狀材料中Cd元素被置換的程度不同,之後我們再利用能量分散光譜儀(EDS)、粉末X-ray繞射儀(XRD)和紫外光可見光光譜儀(UV-Visible)去証實不同Cu/Cd比例的type-II CdS-Cu2S-FePt形成。
In this study, we successfully synthesized CdS-FePt and CdSe-FePt nanorod by the selective growth of FePt nanoparticles on the tip of semiconductor nanorod. Moreover, these hybrid nanostructures still exhibited the optical and magnetic properties. However, the quenched emission of hybrid nanostructures was observed by photoluminescence spectrometer (PL). The intensity reduction resulted from the formation of a Schottky barrier. The formation of barrier made the electron only transferred from the semiconductor nanorod to FePt particle on the tip of nanorod and then, the electron and hole did not recombination within the semiconductor nanorod. Also, the hysteresis loops showed that CdS-FePt and CdSe-FePt were superparamagnetic. Particularly, the significant drop in saturation magnetization of CdS-FePt and CdSe-FePt were due to the presence of the non-magnetic phase, such as CdS and CdSe in hybrid nanostructures. Further, CdS-FePt-Au and CdSe-FePt-Au nanorod were prepared by the reduction of Au precursor. All hybrid nanostructures were examined by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and energy dispersive spectroscopy (EDX).
According to hard-soft acid-base theory (HSAB theory), Cu+ in methanol was used to substitute for the Cd2+ in CdS-FePt nanorod. Through the cation exchange reaction (CER), the heterostructures of CdS-Cu2S-FePt and Cu2S-FePt were synthesized at room temperature. In detail, the extent of conversion during CER depended on the Cu+/Cd2+ ratio. In the other words, low amount of Cu+ produced partial conversion to CdS-Cu2S-FePt and an excess amount of Cu+ leaded to full conversion to Cu2S-FePt. Finally, The results of TEM, XRD, EDS, and Ultra-Violet and Visible Spectroscope (UV-Vis) demonstrated the formation of CdS-Cu2S-FePt and Cu2S–FePt.
1. Li, C. C.; Shuford, K. L.; Chen, M. H.; Lee, E. J.; Cho, S. O. Acs Nano 2008, 2, 1760
2. Ball,P.Nature,2001,414,142
3. Narayanan, R ;Mostafa, A; El Sayed . Nano Letters, 2004, 7 ,1343
4. Wu, H.; Zhang, R.; Liu, X. X.; Lin, D. D.; Pan, W. Chemistry of Materials 2007, 19, 3506
5. lGoldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science 1992, 256, 1425
6. Wei, Q. H.; Bechinger, C.; Leiderer, P. Science 2000, 287, 625
7. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971
8. Haase, M. A.; Qiu, J.; Depuydt, J. M.; Cheng, H. Applied Physics Letters 1991, 59, 1272
9. Lin, S. C.; Lee, Y. L.; Chang, C. H.; Shen, Y. J.; Yang, Y. M. Applied Physics Letters 2007, 90,
10. Nakamura, S.; Jia, A. W.; Kobayashi, M.; Yoshikawa, A.; Shimotomai, M.; Kato, Y.; Takahashi, K. Electronics Lett 1998, 2435
11. Guchhait, A.; Rath, A. K.; Pal, A. J. Chemistry of Materials 2009, 21, 5292
12. Craford, M. G. Ieee Circuits and Devices Magazine 1992, 8, 24
13. Savage, N. Technology Review 2000, 103, 38
14. Tang, H.; Haffouz, S.; Powell, A.; Bardwell, J. A.; Webb, J. Applied Physics Letters 2005, 86, -.
15. S.M. Sze 原著,張俊彥譯,半導體元件物理與製作技術,高立圖書,
16. Ishibashi, A. Journal of Crystal Growth 1996, 159, 555
17. Landholt-Boernstein (1982).
18. A. Ishibashi, J. Crys. grow., 159 (1996) 555
19. Alivisatos, A. P. Science 1996, 271, 933
20. Wang, Y.; Herron, N. Journal of Physical Chemistry 1991, 95, 525
21. 趙之堯,圓柱型硫化鎘奈米晶體的合成,碩士論文1999。
22. 徐國財;張立德, 奈米複合材料, 五南圖書出版股份有限公司。
23. Wang,Y.;Herron,N.,J.Phys.chem.1991,95,525
24. 固態電子學呂助增 著,國立編譯館主編
25. 25.J. E. Macintyre(executive editor), F. M. Daniel, V. M. Stirling(assistant editors), Dictionary of Inorganic Compounds-Chemical Database ,1st Editions, Published by Charpman and Hall(1992)
26. Steigerwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E. Journal of the American Chemical Society 1988, 110, 3046
27. Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E. Journal of Chemical Physics 1984, 80, 4464
28. Gacoin, T.; Lahlil, K.; Larregaray, P.; Boilot, J. P. Journal of Physical Chemistry B 2001, 105, 10228
29. Reisfeld, R. Journal of Alloys and Compounds 2002, 341, 56.
30. Komarneni, S.; Roy, R.;Li, Q ,H, Mater. Res. Bull. 1992, 12, 1393.
31. Landry, C. C.; Lockwood, J.; Barron, A. R. Chemistry of Materials 1995, 7, 699.
32. Zhu, J. J.; Palchik, O.; Chen, S. G.; Gedanken, A. Journal of Physical Chemistry B 2000, 104, 7344
33. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Journal of the American Chemical Society 1993, 115, 8706
34. Lazell, M.; O'Brien, P. Journal of Materials Chemistry 1999, 9, 1381
35. Schmid, G.; Lehnert, A.; Malm, J. O.; Bovin, J. O. Angewandte Chemie-International Edition in English 1991, 30, 874
36. Schmid, G.; West, H.; Malm, J. O.; Bovin, J. O.; Grenthe, C. Chemistry-a European Journal 1996, 2, 1099
37. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nature Materials 2008, 7, 333
38. Yang, J.; Lee, J. Y.; Too, H. P. Journal of Physical Chemistry B 2005, 109, 19208
39. Lu, L. H.; Sun, G. Y.; Zhang, H. J.; Wang, H. S.; Xi, S. Q.; Hu, J. Q.; Tian, Z. Q.; Chen, R. Journal of Materials Chemistry 2004, 14, 1005
40. Henglein, A. Langmuir 2001, 17, 2329
41. Mallik, K.; Mandal, M.; Pradhan, N.; Pal, T. Nano Letters 4, 1, 319
42. Nemchinov, A.; Kirsanova, M.; Hewa-Kasakarage, N. N.; Zamkov, M. Journal of Physical Chemistry C 2008, 112, 9301
43. Zhu, Y. F.; Fan, A. H.; Shen, W. Z. Journal of Physical Chemistry C 2008, 112, 10402
44. Lee, H. J.; Habas, S. E.; Somorjai, G. A.; Yang, P. D. Journal of the American Chemical Society 2008, 130, 5406
45. Habas, S. E.; Yang, P. D.; Mokari, T. Journal of the American Chemical Society 2008, 130, 3294
46. Ferrando, R.; Jellinek, J.; Johnston, R. L. Chemical Reviews 2008, 108, 845
47. Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Nature Materials 2005, 4, 855
48. Maynadie, J.; Salant, A.; Falqui, A.; Respaud, M.; Shaviv, E.; Banin, U.; Soulantica, K.; Chaudret, B. Angewandte Chemie-International Edition 2009, 48, 1814
49. Habas, S. E.; Yang, P. D.; Mokari, T. Journal of the American Chemical Society 2008, 130, 3294
50. Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P. Journal of the American Chemical Society 2009, 131, 16851
51. Li, X. M.; Shen, H. B.; Li, S.; Niu, J. Z.; Wang, H. Z.; Li, L. S. Journal of Materials Chemistry 2010, 20, 923-936
52. Shieh, F.; Saunders, A. E.; Korgel, B. A. Journal of Physical Chemistry B 2005, 109, 8538-8542.55.Shieh, F.; Saunders, A. E.; Korgel, B. A. Journal of Physical Chemistry B 2005, 109, 8538
53. Chen, Y. T.; Ding, J. B.; Guo, Y.; Kong, L. B.; Li, H. L. Materials Chemistry and Physics 2003, 77, 734-737
54. Peng, Z. A.; Peng, X. G. Journal of the American Chemical Society 2001, 123, 1389-1395.
55. Lin, H. Y.; Chen, Y. F.; Wu, J. G.; Wang, D. I.; Chen, C. C. Applied Physics Letters 2006, 88,
56. Menagen, G.; Macdonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U. Journal of the American Chemical Society 2009, 131, 17406
57. Maynadie, J.; Salant, A.; Falqui, A.; Respaud, M.; Shaviv, E.; Banin, U.; Soulantica, K.; Chaudret, B. Angewandte Chemie-International Edition 2009, 48, 1814
58. He, S. L.; Zhang, H. W.; Delikanli, S.; Qin, Y. L.; Swihart, M. T.; Zeng, H. Journal of Physical Chemistry C 2009, 113, 87
59. Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I. Journal of the American Chemical Society 2005, 127, 544
60. He, S. L.; Zhang, H. W.; Delikanli, S.; Qin, Y. L.; Swihart, M. T.; Zeng, H. Journal of Physical Chemistry C 2009, 113, 87
61. D=M/V,Vcds=2879.83nm3 ,Dcds=13.88*10-18g,MFePt=0.98*10-18g
CdS-FePt(one tip) 0.98/(13.88+0.98)=6.6%
CdS-FePt(two tip) {0.98/(13.88+0.98)}*2=13.2%
(6.6%+13.2%)/2≒10%
62. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425
63. Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P. Journal of the American Chemical Society 2009, 131, 16851
64. Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Science 2004,306, 1009
65. Wu, Z. C.; Pan, C.; Yao, Z. Y.; Zhao, Q. R.; Xie, Y. Crystal Growth & Design 2006, 6, 1717
66. Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P. Journal of the American Chemical Society 2009, 131, 16851